Implementing a Distributed Web-based
Management System in Java

Adel Ghlamallah and Raouf Boutaba
University of Montreal, IRO Department
C.P.6128, succursale Centre-ville,

Montreal (Quebec) H3C 3J7
phone: (514) 343-6111 Ext. 3504, fax: (514) 343-5834
e-mail: {ghlamall, boutaba}@iro.umontreal.ca

Abstract - The distribution requirement of current and
Juture networked environments has led to a shift from
traditional centralized towards distributed
management approaches. In this paper, a distributed
architecture for network management is presented.
The architecture implementation is based on an
extensive use of emerging client/server, Web and Java
technologies, the pursued objective being to promote
Jexibility, openness and portability.

1. Introduction

The operation of most of today’s organizations lies on
the services provided by the employed networking and
computing facilitics. The management of network and
system resources is thus of paramount importance so
as to ensure that these resources will provide their
services efficiently. However, current and future
networked systems are more likely to be composed of
large numbers of heterogeneous software and
hardware components. This make their management a
complex task. Such complexity is often reduced by
subdividing the management system into subsystems
and by distributing management responsibilities over
these subsystems, this way reducing management
traffic, avoiding bottleneck situations and taking better
advantage of system resources distributed in the
network. This principle has led to the shift of
traditional centralized management towards
distributed management approaches based upon new
concepts such as management domains [2],
management by delegation {4] and others.

This paper presents an implementation of a distributed
management system where autonomous software
agents are delegated by a manager and act on behalf of
this one to monitor and control the resources in the
domain they are responsible for. The designed
architecture is based on a four-tiers client/server model
integrating a client side (the management interface), a
server side which is the central part in the system
implementing the management application logic. The
server controls a set of intermediate agents delegated
to perform specific management tasks. To allow for

0-7803-5030-8/98/$10.00 ©1998 IEEE

openness and portability, Web technologies and the
Java language have been selected to implement the
designed architecture.

The paper is subdivided into 5 main sections. Section
2 overviews a number of approaches to design network
management applications using Web technologies.
The third section briefly describes the Java language
and highlights its capabilities to support the
development of distributed network management
applications. Section 4 introduces our design
architecture and describes its components. Section 5
presents some implementation issues.

2. Web-based management architectures

There are two main architectures to develop web-based
management applications: Two tiers and three tiers
client/server architectures.

In the two tiers model {14], network managers access
directly to each managed resource individually to carry
out configuration, monitoring . and controlling
operations. Two parties are involved in this model: a
client side allowing to access and display management
information using a Web browser as an interface and
HTTP as the communication protocol; and a server
side where a Web server is embedded in each managed
device to process client requests and 1o notify results in
the form of HTML pages. In this case, each device is
represented by an URL_address used by clients to
access this device. Such access scheme makes network
management easier, friendly and cost effective
compared to current network management platforms.
In the three tiers model {5]. three parties are integrated
to provide management applications combining
traditional platforms and a Web-based management.
In this case, a web-server is added as an intermediate
component accessed by the manager on one hand and
accessing managed resources on the other hand. The
first tier is the client side represented by a standard
browser communicating with the server using the
HTTP protocol. The second tier hosts the Web-server
and the management application and access the
management agents (third tier) representing the

554

managed resources through a given management
protocol (SNMP, CMIP, DM], etc.). The advantage of
this approach is the ability to build on existing
management applications to offer a Web-based
management interface providing this way an
incremental solution to companies that wish to
integrate a Web access to their management products.
The two tiers architecture is adapted to manage small
networks and requires a separate URL address to each
managed resource in the network. However, the
management of large scale networks and systems
requires more sophisticated tasks for the collection and
processing of management data. For such networks
and systems, the three tiers model seems more adapted
since a server part communicates with all managed
resources and provides a general view of the network
state and enables a flexible access to the management
application using one URL address.

3. Java and Web-based network management

Java is an interpretive programming language with
interesting characteristics which can facilitate the
implementation of network applications. It is a simple
and a portable language as it can be executed on
different platforms. The portability feature of the Java
language is a considerable asset with respect to current
heterogeneous networked environments. Using Java
allows network products developers to reduce
development and maintenance costs by providing a
single product regardless of the target system
environments and hardware platforms.

Java also allows interfaces to be dynamic by
integrating so-called applets in HTML pages. This is
an interesting feature for network management
applications as it allows to display dynamic
management information to users. Examples of such
information are real-time state values of managed
resource attributes or network traffic graphics.

Java applets can be downloaded from any server in the
network and executed in standard browscrs. However,
some security constraints prevent Java applets to write
or even to read information on the client host.

In addition Java programming facilitates the transport
of objects through the network and hence satisfies the
distribution transparency requirement. This way Java
objects can be distributed dynamically at any time of
the application life cycle. Such featurc is of particular
importance towards the distribution of network
management functions.

4. Design Architecture

Our architecture for distributed nctwork management
is based on the notion of dclegated agents [4] and the
intermediate agent concept using a scripts MIB as

proposed to the IETF [6]. The intermediate agents
delegated by a management authority receive scripts to
be executed and are supplied with special MIBs that
allow them to control the execution of these scripts. A
script execution leads to the invocation of management
operations within SNMP agents.
Furthermore, our management system integrates a
Web-based management interface. The overall
management architecture is based on a four tiers
client-server model: A client which is basically the
Web browser; A server which is the central part in the
system acting as a Web server and implementing the
management application logic; a set of intermediate
agents; and finally the abstract representation of the
network managed resources provided in our system by
SNMP agents. These components of the architecture
are depicted by figurel. They communicate via
standard Internet protocols which are HTTP, TCP and
SNMP respectively.
Access to the management application is initiated by
the client through the Web browser. The server.
located on an intermediate host, continuously listens
on a given communication port to reccive HTTP
requests from clients. The server handles these
requests locally or directs them to the network using
SNMP and/or TCP protocols.

L) L

Browser Browsen Buewser
(have Applet) (Java Agplet) (avs Applet 1

Ve

HTTP (gel, post)

SNMP (get. set)

litermediate agents

SNMP (gel, vel)

Fig. 1. Four tiers architecture
The following sections details the components
involved in the management architecture.

4.1. The Client

The client is represented by a standard Web-browser
where the interfaces will be displayed. These interfaces
change during the evolution of the application by
downloading HTML pages and applets from the
server.

To access the management application, the client
needs to know only the URL address of the station
hosting the server and possibly the communication
port number of the server. The latter is not necessary if

555

the server is assigned port number 80 which is the
default port for Web servers [10]. Once the connection
is established, the clicnt is authenticated by a password
in order to control the access to the application and
thus prevent unauthorized accesses. This capability is
particularly important in the open Internet context to
protect critical management data.

Once authorized, the client firstly launch a discovery
mechanism which displays in an HTML page the
intermediate agents active in the network. It can then
carry out different operations on the intermediate
agents such as browsing scripts MIBs, discovering
SNMP. agents and dclegating management tasks.
Management tasks delegation can be performed
according to two modes (direct or indirect modes) as
explained in the subsequent sections.

4.2. The Server

The main module of the server is a Wcb server
listening continually on its communication port for the
requests issued from the browsers. This module acts as
a simple web server accepting HTTP requests [11],
processing these requests and sending responses before
closing the connection. The first operation performed
by this server module is the authentication of clients.
In order to reinforce the security, the basic client
authentication message (login and password) is
encoded in Base64 [8]. The next requests issued by
clients are handled differently depending of HTTP
request types: Get or Post. The distinct modules
involved in the server are illustrated in figure 2.

I

———

Fig. 2. Server architecture
4.2.1. Web server

The Web-server module constitutes the core of the
server. It deals with the client requests according to
two schemes. In the simplest scheme, it creates HTML
pages dynamically by intcgrating applets or using the
existing HTML pages and sending them back in
response to client requests. In the second scheme, the
server calls upon the processing module to perform the

necessary operations. The Web-server module is a Java
program based on multithreading and hence can
handle several requests simultaneously.

4.2.2. Processing module

This module is launched by the Web server module
when a request requiring a particular processing is
received. Its main task is to interpret client requests
and translate them into SNMP operations to be
forwarded to the agents through the SNMP interface
module.

When the request concerns the delegation of a script,
the processing module uses the services of the TCP
module to transport the script code or the URL address
from where to download the script. In both cases. the
script code or its URL address are transmitted to the
target intermediate agent. Management information
related to intermediate agents arc stored within a
database and are used by the processing module to
build dynamically HTML pages which are then
returned to the web server module. A typical example
is the situation when the web server requests the
processing module to discover the intermediate agents
active in the network. In such a scenario, the
processing module builds an HTML page based on the

information available in the intermediate agents
directory.
The processing module is similar to the CGI

(Common Gateway Interface) concept but it is based
only on the Java language whereas the CGI programs
are generally written with scripting languages like
Perl. In addition to the portability advantage of our
Java based processing module, it is more efficient than
CGI in that it uses the Servlet concept recently
proposed by Javasoft [12]. The efficiency issue will be
more¢ detailed in the implementation section.

4.2 .3. SNMP interface

The SNMP interface module represents the interface
between the processing module and the intermediate
agents. It is invoked by the processing module to

handle SNMP requests. Because, SNMP is the
protocol used between the different levels of
intermediate agents, the only commands

communicated between theses levels are of type Get,
GetNext, Set and Trap [13]. The information received
from the agents are stored in the database and/or sent
directly to the processing module.

To trigger the execution of a- script located at the
intermediate agent level, the SNMP interface module
sends a Set command to this agent pointing 1o the
«execute script OID» described subsequently.

556

4.2 4. TCP Module

The TCP module carries out two main tasks. The first
one consists in recording the information related to
new registered intermediate agents. Indeed, once an
intermediate agent becomes active, it informs the
server and communicates some relevant information
such as its IP address, the number of its
communication port, and the managed domain (i.e.,
the set of managed resources) it is responsible for. The
other main task, consists in ensuring the delegation of
management scripts by transferring them to the
appropriate intermediate agents.

4.3. Intermediate Agents

The intermediate agents are flexible enough to
perform management tasks dcfined at application
initialization or during application execution. They
can be dynamically expanded with new functionality
without stopping the management application. This
flexibility is important with respect to the dynamic
behavior of the managed network and to facilitate
management applications evolution by dynamically
integrating new management functions.

The main advantage of intermmediate agents is to
reduce the overall management task complexity by
separating management concerns and distributing
management responsibilities over thesc agents.
Another advantage is thcir vicinity to the managed
resources which allows to reduce the management
information traffic in the network. The traffic
generated by the polling of SNMP agents is mainly
located at the level of the intermediate agents whereas
the traffic with the server is considerably reduced and
limited to significant reports generated by the
intermediate agents after processing the information
collected from the SNMP agents.

The intermediate agent is responsible of the
management of a set of resources, commonly known as
a managed domain. The grouping of resources into
managed domains can be done according to logical or
physical criteria [2]. In our management application,
every network segment is a domain managed by a
single intermediate agent. The resources attached to a
network segment are endowed with SNMP agents.

The intermediate agent is a Java program based on
multithreading which enables the handling of several
requests simultancously. It runs as a background
process and is supported on both UNIX and Windows
platforms. Once launched, it loads the scripts MIB and
proceeds to its parsing (conformity to ASN.1 standard)
which may lead to the gencration of crrors message. If
not, the intermediate agent registers at the level of the
server (in the corresponding dircctory entry), and

waits for SNMP requests. The internal structure of the
intermediate agent is shown in figure 3.

mI I s

Load Modde

| — 1

Execution Modde

t

[::::::ZEEEE:::]

SNMP

SNMP Server

-
HTTP

Seripts
MIB

v
Fig. 3. Intermediate Agent architecture

4.3.1. The SNMP Server

When a new request is received at its communication
port, the agent starts a new thread to process this
request. A Get command leads to read the value of the
variable identified by the OID similarly to standard
SNMP agents. On a Set request. the agent can update
the value of the indicated variable, starts the execution
of a management operation, download a script object
from a remote location, or open a connection to
receive the script from the server.

4,3.2. The Scripts MIB

The Scripts MIB contains the list of scripts known to

the intermediate agent and holds control information

for these scripts execution management. The following
attributes have been defined for scripts execution
control:

- ScriptRef: contains the name that identifies each
script known by the agent.

- ScriptStatus: indication of script state (wait,
execution, or error).

- ScriptSrc: indicates the source of script. It .
contains the address of the remote site if the script
is downloaded. and left empty if it is local.

- ScriptExec: indicatcs how many times this script
has been executed by the agent.

- ScriptExeARGS: a list of arguments required for
the script execution.

In addition the MIB contains refcrences to executable

objects which allow when invoked to receive,

download or execute scripts. These object references
arc dcfined as follows:

- ExeClass : allows to load and execute a script.

- ReceiveClass : allows to open a connection and
receive a script from a manager.

- DownLoadClass : allows to download scripts from

557

remote sites.

Each of these object refercnces has an OID in the MIB
known by the manager. When receiving an SNMP Set
command corresponding to one of the OIDs, the
corresponding object reference is activated and the
appropriate operation is executed.

4.3.3. The Execution Module

If the received request corresponds to the execution of
a management script, the agent checks first if this
script belongs to the list of known scripts. If the
invoked script is unknown, the intermediate agent
notifies the manager requesting the script which can
either downloaded or sent directly. Otherwise, the
intermediate agent loads and execute the script using
the ClassLoader Java object.

4.3.4. The Load module

The Load Module is a Java program which performs
the copying of a script file from a remote server given
its URL address. The latter is sent by the manager as a
parameter of the Set command. A script can be also
transferred directly by the manager. In the latter case,
the intermediate agent opens a TCP connection on a
given port and closes it after receiving the script file.
In both cases, the load module is initiated by the
execution module. Moreover, it is the load module that
is responsible, at the starting time, of registering the
intermediate agent in the agents directory maintained
by the server.

5. Implementation Issucs

We have implemented a web-based management
system and application using the standard set of Java
classes [3] and SNMP API provided by the Advent
product [1]. The choice of Java as a programming
language has been motivated by the networked
facilities and cross-platforms interoperability it offers.
Advent SNMP API allows to build SNMP-based
management applications and provides support for
synchronous and asynchronous SNMP communication
between the manager and the agents. The following
sections point out some. issucs
implementation of the server and the intermediate
agent. ‘

5.1. Server Implementation

The Server is implemented by a Java program
supporting multithreading. Each request processed by
the server is linked to thread which execute it. The
threads are launched within the main program. To
implement a flexible behavior of the server, serviet
classes are used. servlets are protocol and platforin

rclatcd to the

independent server side components written in Java to
realize specific tasks.

As part of the server functioning, the processing
module is invoked by the Web server module
whenever an information request is received from the
manager. In this case, a process is loaded dynamically
by the server as a servlet. Mainly this serviet will
construct dynamically new HTML pages containing
the requested information. As an example, when a
discovery command is received, the serviet will
automatically retrieve the information about the
registered intermediate agents from a local directory
and generates an HTML page within an applet at the
client Web interface.

5.2. Intermediate Agent

The intermediate agent is implemented by a Java

" program supporting multithreads and designed to run

on any host that has a Java Virtual Machine. It
processes SNMP requests whenever received from the
server, For example. when it receives a SET command
pointing to the OID corresponding to the execution
class ExecClass. it invokes the execution module with
the name of script received as a parameter in the Set

command. This example is illustrated in figure 4.
Script MIB .

Load areript seript
<nom_senp> Exccution

OID ExecClass

SET OID <ranpl_name:
ChamsLoadkr()

Before to proceed with the execution, the execution
module checks first if the script name is in the list of
known scripts located in the intermediate agent scripts
MIB. After, the loading operation is performed using a
subclass of the Java Load class. The defined loading
subclass checks if the invoked script has been already
loaded in the system. For security purposes, it also
checks if the byte-codes incoming from the network
are legal Java class file. Finally. it instantiates the
invoked scrip object. The loading of a script is done at
run-time when the script is to be executed. This way,
the intermediate agent don’t has to know in advance
about the script (e.g., the script name). This dynamic
capability allows for a high level of flexibility in
overall the management process.

5.3. Scripts Transfer
The transfer of scripts between the server and the
agents can be achicved according to one of the

following schemes:
1) Direct transfer mode: once the manager through

558

his/her Web browser decides to transfer a management
function to an intermediate agent. As the management
function is located at the server side, an SNMP request
is built by the server processing module and sent to the
target agent through the SNMP interface module. The
SNMP request encapsulates the OID corresponding to
the ReceiveClass object reference which in turn will
initiates the script loading at the level of the agent load
module. The latter opens a TCP connection and sends
a READY message to the server for starting the
transfer of the script object. When the script file
correctly received, the agent close the connection.
Figure 5 shows the steps involved in this script

transfer scheme.
Seript MIB

DoalapaSirean u+ sew
DstalapuSiman (weket geilspuSirean)),

Chiea
senncction

OID ReceweClas Open TCR

1t pt
chnacctun R“" b

SET OID <aeript_mame
Serweliockn Recewe « clox(}

[REE——
e S vefi ol ok

Fig. 5: Script direct transfer mode

2) Indirect transfer mode: The server sends only the
URL address of the server where the script is located.
When receiving the SET command encapsulating the
OID corresponding to the DownLoadClass object
reference, the intermediate agent initiates the control
operations depicted in figure 6.

IpuSinam = wlspeadivan)

snad)

Script MIB

Open HITP
connecton senpt

Download 3 Closea
connection

URLC owvaienat © dseq
ul el avecren,

Fig. 6: Script indirect transfer mode
6. Conclusion

This paper presented a practical architecture for
building management applications bascd a four tiers
client/server modcl and emerging Web-technologies.
The architecture integrates intermediate agents
delegated by the manager to perform specific
management tasks at the level of a managed domain.
A Server is introduced to coordinate the agents activity
and to provide a gateway between the agents and the
Web-based management interface. The distributed
feature of the proposed architecture allows to separate
management concerns and hence 1o reduce the
complexity inherent to the management task of large
scale networks and distributed systems.

This paper has also presented an implementation of

this architecture fully based on the Java language. This
has allowed for a high degree dynamicity at three
levels : the client level (Web browser) using Java
applets to display dynamic management information;
the second level, is the Server using Java Servlets
loaded dynamically to perform specific management
tasks such as building HTML pages encapsulating
appropriate Java Applets; and the Intermediate Agents
level using a defined sub-class of the standard Java
Class Loader to dynamically load and execute
management script objects.

The Java implementation choice has been motivated
by the language portability feature to reduce
development and maintenance efforts by allowing the
same management application to run in all
environments supporting a Java Virtual Machine. This
implementation experience has confirmed the network
programming facilities of Java in the specific area of
network management applications development.

References

[1] Advent Network Management, Inc. [On-line),
URL http ://www.adventnet.com

[2] R. Boutaba. "A Methodology for Structuring
Management of Networked Systems”", In Proc.
Int. Conf. on Advanced Information Processing
Techniques for LAN and MAN Management,
IFIP Transactions, pp. 225-242. 1994.

[31 G. Cornell. C. S. Horstmann, "Core Java".
Prentice Hall, 1997

[4] G. Goldszmidt. "Distributed Management by
Dclegation”, PHD thesis, 1996.

[5] M. Jander, "Welcome to the Revolution", Data
Communications, November 1996

[6] D. B. Levi. J. Schoenwaelder "Definition of
Managed Objects for the Delegation of
Management Scripts”, Internet Draft, 1997

[7} G. Paviou. G. Mykoniatis. Jorge-A. Sanchez-P
"Distributed Intelligent Monitoring and
Reporting Facilities", in DSEJ. special issue on
Services for Managing Distributed Systems. 1996

{8] RFC 1113 "Privacy Enhancement for Internet
Electronic Mail"”, August 1989

{91 RFC 1213 "Management Information Base for
Network Management of TCP/IP-Based
Interncts: MIB-II", 1991

[10] RFC 1700, "Assigned Numbers”, October 1994

(11] RFC1945 "Hypertext Transfer Protocol-
HTTP/1.0", May 1996

[12) P. Sridharan, ~ "Advanced Java Networking”.
Prentice Hall 1997

{13] W. Stalling: "SNMP, SNMPv2 and RMON-
Practical Network Management". Addison
Wesley, 1996

[14] The Simple Times Volume 4, Number 3. 1996.

559

