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Abstract - In this paper, we analyse the statistical data sets of
several MPEG. encoded videos and propose a model of the
elements of a scene. The proposed model permits the
characterisation of the elements of the stream scenes. The model
can be used to allocate bandwidth dynamically on a scene basis
and will result in a high capacity gain while guaranteeing the
same and even better QoS. This model is particularly suited for
MPEG encoded VBR traffic in wireless ATM networks.
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1. INTRODUCTION

In a wireless network, bandwidth is perhaps the most
precious and limited resources of the whole communication
system. Therefore, it is of extreme importance to use this
resource in the most efficient way. Whenever a mobile
terminal connects to a base station, the base station will
allocate bandwidth to this mobile terminal. This bandwidth
will remain constant throughout - the duration of the
connection.

The above approach is clearly inadequate for VBR sources.
The bit rate of this kind of sources varies over time and they
have most of the time a bursty nature. Compressed video
sources are known to produce a Variable Bit Rate (VBR)
with a high degree of burstiness, which needs specific
resource management solutions, especially for guaranteed
Quality of Service (QoS) networks.

If resource allocation is performed according to the peak
cell rate of the VBR source, the network will be most of the
time highly under-utilised when the peak-to-average rate
ratios are high. The wireless bandwidth will be wasted and
the wireless network will experience high call blocking and
forced terminations. On the other hand, if resource allocation
is performed based on the source mean cell rate, it is expected
for the source to suffer from unacceptable losses and delays
(especially for video sources imposing hard real-time

. constraints).

Several studies investigated the characterisation of MPEG
traffic [8-10]. In [3], the authors concluded that the traffic
probability density function (p.d.f.) of some VBR MPEG
sources could be modelled by a Gamma distribution. In (4],
the authors have shown that the Gamma and the Log-Normal
distributions are good fits for the p.d.f. of I, P and B subsets
of MPEG sequences. The Log-Normal distribution can also
be used as a model for some VBR MPEG sources.
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Fig. 1: Segment of the frame size sequence for Bond trace.

In the case that the model of the VBR source is known, we
can calculate the required capacity' to have a certain CLR
(Cell Loss Ratio). Even with this approach, big frames are
more likely to be affected by a cell loss than small ones,
which will affect the visual QoS. For example, consider the
VBR source depicted in Fig. 1 offered to a bufferless switch
(we consider only hard real-time services) on a wireless link
of capacity C. Frames around 2000 will experience a very
high cell loss which will be noticed by the user.

A way to solve such problem is the use of a dynamic
bandwidth allocation algorithm. We propose to allocate
bandwidth requirement for each scene depending on the GOP
sizes mean and variance within the scene, where a scene
represents a group of successive GOPs with close sizes. This
will alleviate some of the problems described above.
However, this can be done only if we have a characterisation
of the elements of a scene. In this work, we will analyse the
statistical data sets of several MPEG encoded videos and will
propose a model of the elements of a scene. In this work, we
consider the situation where a mobile terminal wants to send
or receive an MPEG video stream over a wireless ATM link
even if the ideas presented in this work are not specific to
wireless ATM networks.

The paper is organised as follows. Section II introduces the
scene concept. Section III presents a study of the distribution
of the elements of a scene. In section IV, corresponding
analysis and obtained results are presented. Section V
presents evaluations of the Cell Loss Ratio. Conclusions and
future directions are presented in section VI.

1. THE SCENE CONCEPT
An MPEG encoder generates three types of compressed
frames: Intra-coded (I), Predictive (P), and Bi-directional (B)

! The terms ‘capacity’ and ‘bandwidth’ are used interchangeably throughout
the paper.
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frames. An [ frame is encoded independently of other frames
based on DCT (Discrete Cosine Transform) and entropy
coding. A P frame uses a similar coding algorithm to [
frames, but with the addition of motion compensation with
respect to the previous  or P frame, and is used as a reference
point for the next P frame. A B frame is an interpolated frame
that requires both a past and a future reference frames (I or
P). Typically, I frames require more bits than P frames. B
frames have the lowest bandwidth requirement. After coding,
the frames are arranged in a deterministic periodic sequence,
for example “IBBPBB” or “IBBPBBPBBPBB”, which is
called Group of Pictures (GOP).

From Fig. 1, it is observed that an MPEG trace consists of
several segments such that the sizes of I frames in each
segment are close in value. In [1,2], such segments were
referred to as scenes. In this paper we consider scenes with
respect to GOP sizes. The goal behind this choice is two
folds. First, it permits to not distinguish between frame types
(I, P or B). Second, it will allow for a uniform
characterisation of the scene elements.

To model the length of a scene, the authors in [1,2] have
proposed a method that computes scene duration using the
fact that a “sufficient” difference between the sizes of two
consecutive I frames is a strong indication of the start of a
new scene. But this approach requires the availability of the
VBR trace. It takes into account only / frames and do not
permit a uniform characterisation of all frame types (7, P and
B) within a scene.

In this work, we consider two requirements that will lead
us to a new algorithm for determining the scene duration in
an MPEG stream: First, the proposed algorithm must work
“on-the-fly”, which means that the decision of determining
the scene boundaries must only take into consideration the
past GOPs. This will make our algorithm support MPEG
streams independently from the knowledge of the trace. One
advantage of such algorithm is the ability to handle MPEG
streams for which we do not have a trace. The second
requirement concerns the size of the first GOP in each scene,
which has to be as close as possible to the mean GOP size of
the scene. This will allow us to have a characterisation of the
elements of a scene knowing only the size of the first GOP of
that scene (as explained in section IV).

With respect to the above two requirement we compute
scene duration differently (see Fig. 2). Let {GOP(): j=1,
2,..} be the GOP sequence in an MPEG stream. This
sequence consists of the sizes of consecutive GOPs in a given
MPEG trace. Suppose that the current scene is the i scene
that started with the ¥ GOP. The (n+k+I)" GOP of the
sequence indicates the start of the (i+1)" scene if

|GOP(n+k +1)- GOP(k)| 2 T * GOP(k) (1)

where T is a thresholds (T 2 0). n + I in this case
represents the length of the i scene. Notice that the length of
a scene is measured by the number of consecutive GOPs in
that scene.
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Fig. 2: Scene duration

With this definition of scene, all the GOP sizes within a
scene i are located between First GOP()*(1-T) and
First_GOP(i)*(1+T). Where First_GOP(i) is the size of the
first GOP in scene i. Clearly, the value of T impacts the shape
of the scene length distribution. It determines the amount of
correlations between successive scenes; the larger these
value, the less correlated the scenes. The value of the T
parameter impacts also the number of scenes in a particular
trace. Larger values of T produce smaller number of scenes.
For example, for the MTV2 trace, a value of T=20% i.e. (0.2)
produces 1200 scenes while a value of T=80% produces 100
scenes (see Fig. 3).
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Fig. 3: Number of scenes for MTV2 trace

The traces used in our study were provided by Oliver
Rose” [4]. Rose’s movies were taken from VCR tapes, and
were digitised at rate of 25 frames/sec using a Sun Video
card. The movies were compressed using MPEG-I [5,6]
Berkeley’s software encoder [7]. Each MPEG video consists
of 40.000 frames, which is equivalent to approximately half
an hour.

1. GOP SIZE DISTRIBUTION WITHIN A SCENE

Based on our definition of a scene see (1), the sizes of
GOPs within a scene could be considered close to each other.
The GOP sizes fluctuate around an average value that
represents the level of activity of the scene. Let GOP(n) be
the size of the n™ GOP in an MPEG stream. We suppose that
GOP(n) is the sum of two independent random variables:
GOP(n) = GOP"(n) + GOPD(n) 1))

Where GOP'(n) reflects the level of activity of the scene,
while GOPD(n) represents the fluctuation of the n™ GOP
around GOP’(n). This assumption will simplify greatly the
model.

The quantity GOP"(n) is constant for all GOPs in the same
scene, and it varies from one scene to another. Hence, for the
i™ scene that started with the k% GOP, we have
GOP'(k)= GOP'(k+1)=..=GOP"(k + N; - )= GOP(i)  (3)

N; represents the length of the i* scene. Notice that the
length of a scene is measured by the number of consecutive

2 The traces can be obtained from the ftp site fip-info3.informatik.uni-
wuerzburg.de in the directory /pub/MPEG/.

999



GOPs in that scene.

Suppose that {GOPs(i) : i=1,2,...} is a sequence of ii.d.
random variables with common pdf /. The histogram of
{ GOP(i)} for the MTV1 trace is shown in Fig. 4. The shape
of this histogram suggests the use of a Log-Normal or a
Gamma fit. Solid line represents the Log-Normal fit for the
empirical data, dash-dot line represents the Gamma fit.

Toton

Fig. 4: The histogram of { GOPs(i)} for MTV1 trace with T=10%

Consider GOPD(n) the quantity representing the variation
of the size of the n™ GOP around GOP’(n). For a given trace,
we compute the empirical sequence {GOPD(n)}, where
GOPD(n) = GOP(n) — GOP(i,) (i, is the scene index to
which the n™ GOP belongs). Note that {GOPD(n)} was
assumed as independent of {GOPy(i)}, and thus invariant
with respect to scene changes, and depends only on the T
parameter. :

The histogram of {GOPD(n)} for the MTV1 trace is
shown in Fig. 5. The shape of this histogram suggests the use
of a Normal fit. Therefore, we set fGopFN(O,cngPD). Since
{GOPD(n)} is the variation of the GOP sizes around the
mean size value of the scene to which each GOP belongs, the
mean value of {GOPD(n)}is equal to zero. Thus the GOP
sizes within a scene i can be modelled by a normal
distribution with mean . = GOP(i) and variance 6° = G’gopp
(R(,09). p varies from one scene to another (since it
reflects the level of activity of the scene) while o is invariant
to scene changes and depends only on the T parameter.

1Iv. THE INFLUENCE OF THE T PARAMETER

Our ultimate goal is to allocate bandwidth dynamically on
a per scene basis knowing the first GOP of the scene only.
For that purpose, it is important to characterise the elements
of the scene. As this characterisation depends on the T
parameter, the study of the influence of the T parameter is of
great importance.

Let us recall that T is the parameter that determines the
height of the scenes (see Fig. 2). The value of T impacts the
shape of the scene length distribution. It determines the
amount of correlations between successive scenes; the larger
these value, the less correlated the scenes. The value of the T
parameter impacts also the number of scenes in a particular
trace. Larger values of T produce smaller number of scenes
(see Fig. 3).

Our goal is the characterisation of the GOPs within a
scene. The idea is to see if from the study of MPEG traces we
can approximate or even calculate the mean and the variance
of the GOPs within a scene knowing only the size of the first
GOP of that scene. This will allow a characterisation of the
entire scene based on the size of the first GOP, which can be
used to allocate bandwidth for the scene.

We compute the value GOP(n)-GOP"(n) for every n as the
difference between each GOP size and the mean size of the
scene to which the GOP belongs. Let us recall that

GOPD(n) = GOP(n) ~ GOP'(n) for all n.

GOPD depends on the value of the T parameter. For values
of T below 200%, the shape of { GOPDY} suggests the use of a
normal fit. Values above 200% are not important for us since
the entire MPEG stream will not have many scenes, and
hence, will not profit from the scene-based bandwidth
allocation. Indeed, for T above 200%, the majority of studied
streams are composed of a single scene.

Fig. 5: GOPD for T=25%, 50% and 75% for MTV 1 trace

Fig. 5 depicts the histogram for empirical sequences
{GOPD(n)} for different values of T, namely 25%, 50% and
75% for the MTV1 trace. Solid lines represent the Normal
fits for the empirical data.

The normal distribution fgopp is fully characterised by the
mean Hgopp and the variance (()'Gom)2 of the empirical
sequence {GOPD}. Since {GOPD(n)} depends on the T
parameter, the values Hgopp and Ggopp depend also on the T
parameter.

We compute pgopp and Ggopp for different values of T
(from T=0% to 200% step 1%). The results are presented Fig.
6. Since GOP (n) represents the mean GOP size of the scene
to which GOP(n) belongs, Ugopp is equal to zero for all T.

Fig. 6 shows the variation of Ggopp as a function of T for
the ATP, ASTERIX and MTV1 traces.

ATP

________

W g s o o,

STERIX and MTV1 traces

I e £

Fig. 6: GOPD STD for ATP,
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When T is near 0 (<10%), the scenes contains only few
GOPs (we suppose that the GOP sizes are not constant since
we consider VBR traffic), Ggopp is also near 0. ogopp Will
increase with the value of T until some maximum value and
then it remains constant (see Fig. 6). The constant value,
Ogop, 1S the standard deviation (STD) of the entire stream.
Indeed, when T is very high the entire stream is considered as
one scene and the STD of {GOPD} is nothing but Ggop.
Since there is some value Ty from which there is only one
scene in the entire stream, we can set Ggopp = Ogop for all
T>Twu.

It is worth noting that the value of Ogopp increases linearly
from zero to Ogop. Also, Ggopp begins to stabilise, sometimes,
before T reaches Ty. This occurs for values of T for which
the entire stream contains only few GOPs (2 or 3). Let the
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first value of T for which this stabilisation occurs be T,.

We can then model the value of Ggopp by
Ogopp = T *6gop/ T for T<T,, and
Ggopp = Ogop for T2Ty, )

From the study of MPEG traces, we notice that the value of
Tn is always around 90%. If the maximum GOP size,
GOPpmax, and the minimum GOP size, GOP,,;,, of the entire
GOP stream are known, we can calculate the value of Ty as
follows:

Tv= MAX[(1 - GOP,,y GOP(1)), (GOPyax/GOP(1) — 1)] (5)

Where MAX[X, Y] is the maximum operator, and GOP(1)
is the size of the first GOP of the stream.

Table 1 shows the values of Ty and T, for different MPEG
streams. Note that values of T, are only approximations
found while plotting the variation of 6gopp as a function of T.
Table 1 shows also the number of scenes for the MPEG
traces with T =T,

We consider the variance and the average of the films as
known values for two reasons: Either we have these films
beforehand, hence we can calculate these values, or use an
encoder that allows us to specify a desired variance. A
number of works {12,16] have been done on designing rate
control (or rate shaping) mechanisms to enforce the encoder

to respect some predefined characteristics like a certain mean

rate and target variance. )

Our ultimate goal is to allocate bandwidth dynamically on
a per scene basis knowing the first GOP of the scene only.
For that purpose, it is important to characterise the elements
of the scene. As shown earlier, the GOP sizes within a scene
can be modelled by a normal distribution. We must find p"
and ¢ that approximate or ovérestimate ) and o for each
scene. We can use these values to allocate bandwidth for the
scene, and if p'>p and 0’20 for each scene then user

requirements will not be violated.
Table 1 : Ty and Ty, values for some traces

Newsl 84.90% 84.90% 1
MrBean 88.49% 88.49% 1
Lambs 89.76% 89.76% 1
MTV1 130.13% 94% 2
Simpsons 158.90% 97% 2
ATP 160.20% 97% 2
Soccer 160.37% 91% 2

For MPEG streams, for which we have already traces, p is
accurately computed based on those traces. However, for
MPEG streams for which we don’t have traces beforehand p
must be approximated. '

The STD 6 can be calculated using (4). To check if we can
replace the mean GOP size with the size of the first GOP
without violating user requirements (a specified CLR), we
compute the difference { GOPDS}. This corresponds to check
if p‘(s)=F irst_GOP(s) is viable. We compute the percentage
that represents GOPDS(s) = (1'(s) - p(s)) to the height of
scene s. The height of a scene s is defined by First_GOP(s)*T

(see Fig. 2). This percentage is determined as follows:

PERC(s) = [ GOPDS(s) / (First_GOP(s)*T) ]

As shown in Fig. 7 PERC is not always positive. Similar
results were found for all values of T below 100% and for all
other MPEG traces. This means that for many scenes the size
of the first GOP of the scene is smaller that the mean GOP
size within the scene. Thus if u’(s):First_GOP(s) is used to
evaluate the bandwidth required to satisfy a certain CLR, user
requirements will not be guaranteed.

This problem can be solved by correcting the value of u*.
We propose to add the STD ogop of the entire stream,
obtaining consequently W (s)=First_GOP(s) + Ggop for each
scene s.

As all GOP sizes within a scene s are bellow
Frist_GOP(s)*(1+T), we set p.‘(s):MIN [First_GOP(s) +
Ogop, Frist_GOP(s)*(1+T)] for each scene s. MIN[X,Y] here
represents the minimum operator.

The new percentage that represents (u*(s) - u(s)) to the
height of scene s is now computed. Fig. 8 shows that this new
percentage is always positive. Similar results are obtained for
all values of T below 100% and for all other studied MPEG
traces.

Te30%

Fig. 7: PERC with T = 50% and u'(s)==First_GOP(s) for the MTV1 trace

The new value of u° can be used to characterise the
elements of each scene without violating user requirements
(as explained in section V).

ESgm
Scene index

T=50%

Fig. 8: PERC with the new value of " -for the MTV1 trace

In [11], we have proposed a dynamic bandwidth allocation
algorithm allowing for a cagacimy gain of 82.06% for T=10%
and a required CLR=10"". This means that if the static
allocation approach (based on the characterisation of the
entire MPEG stream) uses a particular amount B of
bandwidth to have a CLR=10"°, our algorithm uses only
17.94 % of B to satisfy the same CLR requirement.

The proposed algorithm allocates much less capacity than
the constant allocation scheme while guarantying the required
QoS. This allows distributing the cell loss over all the film
scenes while with constant allocation methods the cell loss is
concentrated within big frames. Consequently, big GOPs are
not disadvantaged compared to small ones, and hence the
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visual quality of the film is improved. It is worth noting that
in this work the problem of call admission is not addressed
and that the capacity gain is obtained supposing that the
required capacity is always available.

V. CELL LOSS RATIO EVALUATION

Consider a hard real-time VBR service where the stream
produced by the VBR source is directed to a bufferless switch
on a wireless link of capacity C. Let this VBR source bit-rate
at time t be Rt. The Cell Loss Ratio (CLR) can be estimated
by the fluid approximation [12] as follows:
Ere-0)*} 6

E{Re}

Where Ef.] represents the expectation operator and X" is
defined as X* = X if X>0 and X" = 0 if X<O0. If the p.d.f. of
the source rate is defined by f{u), then (6) can be written as:

Jw-0) s (7)
CLR=S—
fuf @ydu

0

CLR =

For a normal distribution X(u, o) with a p.d.f. f and a
cumulative distribution function (c.d.f.) F and using (7) we
obtain:

cLr =%~

*(1-F(C)+0** f(C)-C*(1-F(C) ®
U

Using (8) we can calculate the required capacity C for a
pre-specified CLR. The performed simulations show that the
required CLR is always respected. We have allocated
bandwidth to each scene s supposing a normal distribution of
the GOPs within the scene as stated in section III. We have
taken W (s)=First_GOP(s) + Ggop and G as in (4).

Fig. 9 shows the obtained CLR for the ATP trace and for
different required CLRs. We remark that the required CLR is
always respected. For values of CLR below 10, the obtained
CLR is always below 10™'°. Similar results are obtained for all
the studied MPEG traces. We have computed the obtained
CLR for 16 MPEG streams for different values of T (from
T=10% to 100% step 10%) and different values of CLR
(from 107° to 0.1 step 0.1). We always have the same and
even better CLR (for a CLR below 10°).

VL. CONCLUSION

In this paper, we analysed the statistical data sets of several
MPEG encoded videos and proposed a model of the elements
of the stream scenes. The proposed model permits the
characterisation of the elements of the stream scenes, which
can be used to aliocate bandwidth dynamically for each scene
and will result in a high capacity gain while guaranteeing the
same and even better QoS. Taking p'(s)=First_GOP(s) +
Ggop as an approximation of u for each scene s is a good
evaluation of the mean GOP size within the scene s. Indeed,
this results in a lower CLR. However, this approximation is
not the best evaluation because it overestimates the mean [L.

Future work will involve studying a better estimation of p,
which, while guaranteeing the CLR requirement, will further
increase the capacity gain by allocating less bandwidth. Such

study is particularly important for MPEG streams for which
we don’t have traces beforehand. For MPEG streams, for
which we have already traces, p is accurately computed
based on those traces. The impact of a connection admission
control mechanism on the obtained results is also of great
importance.
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Fig. 9: obtained CLR for ATP trace
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