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Abstract—Cooperation between intrusion detection systems
(IDSs) allows collective information and experience from a net-
work of IDSs to be shared to improve the accuracy of detection. A
critical component of a collaborative network is the mechanism
of feedback aggregation in which each IDS makes an overall
security evaluation based on peers opinion and assessment. In
this paper, we propose a collaboration framework for intrusion
detection networks (CIDNs) and use a Bayesian approach for
feedback aggregation by minimizing cost. The proposed model is
highly scalable, robust, and cost effective. Experimental results
demonstrate an improvement in the true positive detection rate
and a reduction in the average cost of our mechanism compared
to existing models.

I. INTRODUCTION

In recent years, Internet intrusions are becoming more
sophisticated and harder to detect. Intrusions are usually
accomplished with the assistance of malicious code (a.k.a mal-
ware), including worms, viruses, Trojan, and Spyware. Recent
intrusion techniques tend to compromise a large number of
nodes to form a botnet [14], and use those compromised nodes
to launch distributed attacks such as Distributed Denial of
Service attacks [10] or organized attacks such as Fast-Flux
service Networks [1].

To protect computer users from malicious intrusions, In-
trusion Detection Systems (IDSs) are designed to monitor
network traffic or computer activities and alert administrators
or computer users about suspicious intrusions. An IDS can
be either host-based (HIDS) or network-based (NIDS). Tradi-
tional intrusion detection systems work in isolation and can be
easily compromised by new or unknown attacks. Collaboration
in IDSs enables each IDS to use collective information and
experience from other IDSs to achieve more accurate intrusion
detections. The overlay network which connects IDSs to
exchange information with each other is called a Collaborative
Intrusion Detection Network (CIDN).

Several CIDNs [15], [2], [7] have been proposed in the past
few years. In most CIDNs, especially worm detection CIDNs
(such as Dshield [13] and NetShield [2]), IDSs are distributed
in different locations and report intrusion information to the
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collaborative system. The collected data is usually processed
and analyzed in a centralized or distributed manner. However,
most CIDNs assume that all collaborators are reliable and
trustable [2], [7], [3], which may lead their collaboration
system to be vulnerable to malicious insiders. Some recent
works on CIDNs [7], [5], [6] propose to use trust models
to identify dishonest peers. Intrusion assessments from nodes
with different trust values are assigned with different weights
to improve intrusion detection accuracy. However, they use a
heuristic approach to aggregate feedbacks from others. Some
other work [12], [11] proposed to use a Bayesian hypothesis
testing methodology to aggregate feedbacks from distributed
sensors. Their systems require each sensor to be involved in
detecting all intrusions. This condition does not apply to our
social network based CIDN.

In this paper, we use a Bayesian approach to devise a
decentralized feedback aggregation mechanism for each peer
in the CIDN. A Beta distribution is used to model the false
positive (FP) rate and true positive (TP) rate of each IDS.
We estimate the cost of all possible decisions after feedback
aggregation. Only the decision with least cost is chosen. We
evaluate the Bayesian aggregation model using a simulation
approach and compare it with some other existing aggregation
approaches.

The rest of this paper is organized as follows. In Section
II, we review some existing CIDNs in the literature and IDS
feedback aggregation techniques. Section III is the proposed
CIDN framework design. We describe the aggregation problem
and propose a Bayesian aggregation solution in Section IV. We
show the evaluation results of the Bayesian aggregation model
in Section V. Finally, we summarize the main results of the
paper and point out some future challenges in Section VI.

II. RELATED WORK

Many architectures have been proposed in the literature,
such as Indra [8], DOMINO [15], and NetShield [2]. However,
these works did not address the problem that the system might
be degraded by some compromised insiders who are dishonest
or malicious.

ABDIAS [7] is a community based CIDN where IDSs are
organized into groups and exchange intrusion information to



gain better intrusion detection accuracy. A simple majority-
based voting system was proposed to detect compromised
nodes. However, this voting-based system is vulnerable to col-
luded voting. Another solution to detect compromised nodes
is a trust management system where peers build trust with
each other based on personal experience. Existing trust man-
agement models for CIDN include the linear model [4], [5]
and the Bayesian model [6]. However, all these works use
heuristic approaches to aggregate consultation results from
other collaborators. In this paper, we propose a Bayesian
aggregation model which aims at finding optimal decisions
based on collected information.

In the field of intrusion detection, The Bayesian approach
has been used in distributed detection. Existing work including
[12] and [11] uses Bayesian hypothesis testing methodologies
to aggregate the results from sensors distributed in a local
area network. However, the methodologies are limited to the
context that all participants need to engage in every detection
case. While in our context, IDSs may not be involved in all
intrusions detection and the collected responses may be from
different groups of IDSs each time.

III. COLLABORATION FRAMEWORK

The purpose of a CIDN framework is to connect IDSs
including HIDSs and NIDSs into a social network. Each
IDS can freely choose collaborators on its own benefit. For
example, IDSs may choose to collaborate with other IDSs
with which they had good experience. We consider that the
collaboration participants may have various detection expertise
levels and they may act dishonestly or selfishly in collabora-
tion. Therefore, a few features are desirable for an efficient
CIDN:

1) It is necessary to have a CIDN endowed with an effective
trust evaluation system to reduce the negative impact of
dishonest nodes and discover compromised ones.

2) An incentive-compatible collaboration resource alloca-
tion mechanism to discourage selfish behaviors and
encourage active collaborations.

3) An efficient feedback aggregation algorithm to minimize
the cost from false intrusion detection.

4) The system needs to be robust against malicious insiders.
5) Scalability is also a desired feature of the system.
To achieve the preceding goals, we propose a social

network-like CIDN (Figure 1). The topology as shown in Fig-
ure 1(a) consists of IDSs (nodes) including NIDSs and HIDSs.
Nodes are connected if they have a collaborative relationship.
Each node maintains a list of other nodes which it currently
collaborates with. We call such a list of nodes acquaintances.
Each node in the CIDN has the freedom to choose its acquain-
tances based on their trustworthiness. The communication
between collaborating nodes are intrusion evaluation requests
and corresponding feedbacks. There are two types of requests:
intrusion consultations and test messages. The architecture
of the CIDN is shown in Figure 1(b). The collaboration
system is composed of seven components, namely, intrusion
detection system, communication overlay, trust management,

acquaintance management, resource management, feedback
aggregation, and test message generator. In the following
subsections, we will elaborate on the consultation and test
messages and the functionality of each component in the
architecture.

A. Consultation message

When an IDS detects some suspicious alerts but does not
have enough experience to make a decision whether it should
raise an alarm or not, it may send alerts to its acquainted
IDSs for diagnosis. Feedbacks from the acquaintances are
aggregated and a final alarm decision is made based on the
aggregated results. The alert information provided to acquain-
tances depends on the trust level of each acquaintance. For
example, a node may want to share all alert information in-
cluding data payload with nodes inside its local area network.
Some intrusion information might be digested or even removed
when sent to acquaintances from the Internet.

B. Test Message

In order for the nodes in the CIDN to gain experience
with each other, we propose that IDSs use test messages
to evaluate the trustworthiness of others. Test messages are
“bogus” consultation requests which are sent to measure the
trustworthiness of another node in the acquaintance list. It is
sent out in a way that makes it difficult to be distinguished
from a real consultation request. The testing node knows the
true diagnosis result of the test message and uses the received
feedback to derive a trust value for the tested node. This
technique can discover inexperienced and/or malicious nodes
within the collaborative network.

C. Communication Overlay

Communication overlay is the component which handles all
the communications from the host node with other peers in
the collaborative network. The messages passing through the
communication overlay include: test messages from host node
to its acquaintances; intrusion consultations from host node to
its acquaintances; feedback from acquaintances; consultation
requests from acquaintances; feedback to acquaintances.

D. Trust Management

The trust management component allows IDSs in the CIDN
to evaluate the trustworthiness of others based on their per-
sonal experience with them. The host node can use test
messages to gain experience quickly. Indeed, the verified
consultation results can also be used as experience. In our
proposed CIDN, we have adopted a Dirichlet-based trust
management model [6] to evaluate the trustworthiness of IDSs.
In this trust model, IDSs evaluate the trustworthiness of others
based on the quality of their feedbacks. The confidence of trust
estimation is modeled using Bayesian statistics and the results
show that the frequency of test messages is proportional to the
confidence level of trust estimation.
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Fig. 1. Design of a Collaborative Intrusion Detection Network: (a) IDN Topology (b) Collaboration Architecture

E. Acquaintance Management

Since each IDS needs to send test messages to its ac-
quaintances to maintain the confidence of trust evaluation,
the acquaintance list needs to be limited for the system
to be scalable. Other than acquaintances, our system also
maintains a consultation list. The nodes on the consultation
list are randomly selected from the acquaintances which have
passed the probation period. Test messages are sent to all
acquaintances while consultation requests are only sent to the
nodes in the consultation list. The acquaintance list is updated
regularly to recruit new nodes or remove unwanted ones. In
our system, we use a fixed length acquaintance list and only
keep the most trusted peers in the list and remove the relatively
less trusted peers.

F. Resource Management

To prevent some peers from taking advantage of the system
and launching a Denial-of-Service attack by sending too many
consultation messages to overwhelm the targeted IDSs, a
resource management system is required to decide whether the
host should allocate resources to respond to each consultation
request. An incentive-compatible resource management can
assist IDSs to allocate resources to their acquaintances so that
other IDSs are fairly treated based on their past assistance
to the host IDS. Therefore, an IDS which abusively uses the
collaboration resource will be penalized by receiving fewer
responses from others. The resource allocation system also
decides how often the host should send test messages to its
acquaintances, protecting the system from being overloaded. In

our CIDN, we use an incentive-compatible resource allocation
system [16] for IDSs in the CIDN.

G. Test Message Generator

The functionality of this component is to generate random
“bogus” consultation requests for which the results are known
beforehand. The feedback of test messages can be used to
evaluate the trustworthiness of the feedback sender. It should
be difficult to distinguish the generated test messages from
regular consultation requests.

H. Feedback Aggregation

Feedback aggregation is a critical component and it has a
direct impact on the accuracy of the collaborative intrusion
detection. After the host IDS sends out a consultation request
to its acquaintances, the collected feedbacks are used to decide
whether the host IDS should raise an alarm to the administrator
or not. If an alarm is raised, the suspicious intrusion flow will
be suspended and the system administrator investigates the
intrusion immediately. On one hand, false alarms may waste
human resources. On the other hand, undetected intrusions
may cause damages. In this paper, we use a Bayesian ap-
proach to model the probabilities of false alarms and missing
intrusions based on collected information. We then make a
decision that leads to the lowest potential cost.

IV. PROBLEM FORMULATION AND SOLUTION

When an IDS observes suspicious activities and does not
have enough experience to make an accurate evaluation of



TABLE I
SUMMARY OF NOTATIONS

Symbol Meaning

N Set of IDSs in the collaborative network
A Set of acquaintances of a node
Y Random vector of complete feedback from a node’s acquaintances
y An instance of complete feedback from a node’s acquaintances
Fk, Tk False positive probability and trust positive probability for acquaintance k
Fk, Tk Probability density function of Fk, Tk

π0, π1 Prior probability of no-attack and under-attack
τ Probability threshold for final decision
P Probability of “under-attack”
X Random variable to state whether the host IDS is under attack or not
Ug The utility goal of average cost
Cfp, Cfn Marginal cost of making false positive and false negative decisions

potential intrusions, it can send out its observed intrusion
information to its acquaintances to ask for diagnosis. The
feedback from its acquaintances can be used to make a final
decision. The input to the host IDS is the past history of each
acquaintance regarding their detection accuracy, as well as
their current feedbacks. The output is a decision on whether
to raise an alarm or not.

We formulate the feedback aggregation as a Bayesian opti-
mization problem. Consider a set of nodes N connected into
a network, which can be represented by a graph G = (N , E).
The set E contains the undirected links between nodes, indi-
cating the acquaintances of IDSs in the network.

Let Yi := [Yj ]j∈Ai be an observation vector of an IDS i that
contains the feedback from its peers in the acquaintance list
Ai. For the convenience of presentation, we drop the subscript
i in the notations appearing later in this paper. It should
be clear that each IDS i has the same set of characteristic
parameters. Suppose node i receives a list of diagnosis results
y = {y1, ...,y|A|} from its acquaintances, where yj ∈ {0, 1},
j = 1, 2, · · · , |A|. yj = 0 means that the j-th acquaintance
suggests an intrusion related to the alert, whereas yj = 1
indicates that the j-th acquaintance suggests no intrusion
related to the alert. Our goal is to decide whether the system
should raise an alarm to the system administrator based on the
current received feedbacks. Table I summarizes the notations
we used in this section for readers’ convenience.

In the following subsections, we will first model the past
behavior of acquaintances. Then, we model the decision
problem using Bayesian risk function. In the last subsection,
we propose an algorithm to find the minimum number of
feedbacks from acquaintances to make a satisfactory decision.

A. Modeling of Acquaintances

Let random variables Fk and Tk denote the false positive
(FP) probability and true positive (TP) rate of acquaintance
k ∈ A. FP is the probability that the IDS gives a positive
diagnosis (under-attack) given the condition that there is no
attack. TP is the probability that the IDS gives correct positive
diagnosis under the condition that there is an attack.

Let Fk and Tk be the probability density functions of Fk

and Tk whose support is on the interval [0, 1]. Using the past

records as sample data from each acquaintance, we can apply
Beta function to estimate Fk and Tk as follows:

Fk ∼ Beta(xk|α0
k, β0

k) = Γ(α0
k+β0

k)

Γ(α0
k)Γ(β0

i )
x

α0
k−1

k (1− xk)β0
k−1,(1)

Tk ∼ Beta(yk|α1
k, β1

k) = Γ(α1
k+β1

k)

Γ(α1
k)Γ(β1

i )
y

α1
k−1

k (1− yk)β1
k−1,(2)

where Γ(·) is the gamma function [9], parameters α0
k and α1

k

are given by

α0
k =

∑u
j=1 λt0kj,r0

k,j β0
k =

u∑

j=1

λt0k,j (1− r0
k,j) (3)

α1
k =

∑v
j=1 λt1k,j r1

k,j β1
k =

v∑

j=1

λt1k,j (1− r1
k,j); (4)

r0
k,j ∈ {0, 1} is the j-th diagnosis data from acquaintance

k under no intrusion: r0
k,j = 1 means the diagnosis from

k is positive while r0
k,j = 0 means otherwise. Similarly,

r1
k,j ∈ {0, 1} is the j-th diagnosis data from acquaintance

k under intrusion: r1
k,0 = 1 means that the diagnosis from k is

positive while r1
k,0 = 0 means otherwise. Parameters t0kj and

t1k,j denote the time elapsed since the j-th feedback is received.
λ ∈ [0, 1] is the forgetting factor on the past experience. λ = 0
represents a memoryless situation while λ = 1 indicates the
situation where all the past experiences are taken into account
on equal basis. u is the total number of non-intrusion cases
among the past records and v is the total number of intrusion
cases.

To make the parametric updates scalable to data storage
and memory, we can use the following recursive formulae to
update α0

k, α1
k and β0

k, β1
k:

αl
k(tj) = λ(tl

k,j−tl
k,j−1)αl

k(tlk,j−1) + rl
k,j ; (5)

βl
k(tj) = λ(tl

k,j−tl
k,j−1)βl

k(tlk,j−1) + rl
k,j , (6)

where l = 0, 1 and j− 1 indexes the previous data point used
for updating αl

k or βl
k.

B. Feedback Aggregation

A node receives a feedback vector y from its acquaintances.
Let random variable X ∈ {0, 1} denote the scenario of “no-
attack” or “under-attack”. The probability of a host IDS being



“under-attack” given the diagnosis results from all acquain-
tance IDSs can be written as P[X = 1|Y = y]. Using Bayes’
Theorem, we have

P[X = 1|Y = y]

=
P[Y = y|X = 1]P[X = 1]

P[Y = y|X = 1]P[X = 1] + P[Y = y|X = 0]P[X = 0]
(7)

Assume that the acquaintances provide diagnoses indepen-
dently and their FP rate and TP rates are known; then (7)
can be further written as

P[X = 1|Y = y]

=
π1

∏|A|
k=1 Tyk

k (1− Tk)1−yk

π1

∏|A|
k=1 Tyk

k (1− Tk)1−yk + π0

∏|A|
k=1 Fyk

k (1− Fk)1−yi

,

where π0 = P[X = 0], π1 = P[X = 1], where π0 + π1 = 1,
are the prior probabilities of the scenarios of “no-attack” and
“under-attack”. yk is the k-th element of vector y.

Since Tk and Fk are both random variables with distribu-
tions as in (3), we can see that the conditional probability
P[X = 1|Y = y] is also a random variable. We use
a random variable P to denote the conditional probability
P[X = 1|Y = y]. Then P takes a continuous value over
domain [0, 1]. We denote by fP (p) the probability density
function of P .

Let Cfp and Cfn denote the marginal cost of a FP decision
and a FN decision. We assume there is no cost when a correct
decision is made. We use marginal cost because the cost of a
FP may change in time depending on the current state. Cfn

largely depends on the potential damage level of the attack.
For example, an intruder intending to track a user’s browsing
history may have lower Cfn than an intruder intending to
modify a system file. We define a decision function δ(y) ∈
{0, 1}, where δ = 1 means raising an alarm and δ = 0 means
no alarm. Then, the Bayes risk can be written as,

R(δ) =
∫ 1

0

(Cfp(1− x)δ + Cfnx(1− δ))fP (x)dx

=
∫ 1

0

CfnxfP (x)dx

+δ

(
Cfp − (Cfp + Cfn)

∫ 1

0

xfP (x)dx

)

= CfnE[P ] + δ(Cfp − (Cfp + Cfn)E[P ]), (8)

where fP (p) is the density function of P . To minimize the
risk R(δ), we need to minimize δ(Cfp − (Cfp + Cfn)E[P ]).
Therefore, we raise an alarm (i.e. δ = 1) if

E[P ] ≥ Cfp

Cfp + Cfn
. (9)

Let τ = Cfp

Cfp+Cfn
be the threshold. If E[P ] ≥ τ , we raise an

alarm, otherwise no alarm is raised. This decision rule can be

written as follows:

δ =





1 (Alarm) if E[P ] ≥ τ ,

0 (No alarm) otherwise.
(10)

The corresponding Bayes risk for the optimal decision is:

R(δ) =





Cfp(1− E[P ]) if E[P ] ≥ τ ,

CfnE[P ] otherwise.
(11)

C. Gaussion Approximation

When αi and βi are sufficiently large, Beta distribution can
be approximated by Gaussion distribution according to

Beta(α, β) ≈ N

(
α

α + β
,

√
αβ

(α + β)2(α + β + 1)

)
.

The density function of P can also be approximated using
Gaussion distribution. According to Gauss’s approximation
formula, we have,

E[P ] ≈ 1

1 + π0
∏|A|

k=1 E[Fk]yk (1−E[Fk])1−yk

π1
∏|A|

k=1 E[Tk]yk (1−E[Tk])1−yk

=
1

1 + π0
π1

∏|A|
k=1

α1
k+β1

k

α0
k+β0

k
(α0

k

α1
k
)yk(β0

k

β1
k
)1−yk

. (12)

D. Determination of Number of Aggregated Acquaintances

In the consultation period, the number of acquaintances
involved in diagnosis may change. A host IDS may consult
only part of it acquaintances based on needs. Therefore, we
propose that each IDS set a cost goal and consult only
sufficient acquaintances to reach the goal. We define the utility
goal to be Ug . Upon receiving the i-th feedback, the host IDS
compares the expected cost R(δ) with Ug. If R(δ) ≤ Ug, the
host IDS stops further consultation and a decision is made
immediately. Otherwise, the host IDS needs to consult more
acquaintances. The decision rule is presented below.

δ =





Alarm if E[P ] > τ and Cfp(1− E[P ]) ≤ Ug,

No alarm if E[P ] ≤ τ and CfnE[P ] ≤ Ug,

Sample more data otherwise.

However, when all the acquaintances are used and the utility
goal is still not achieved, the host IDS will make a decision
according to (10). We describe this dynamic decision making
in Algorithm 1.

V. EXPERIMENTS AND RESULTS

In this section, we use a simulation approach to evaluate the
efficiency of the Bayesian-based feedback aggregation scheme.
We compare the Bayesian aggregation mechanism with other
heuristic approaches, such as the simple average aggregation
and the weighted average aggregation (to be explained in more
detail in this section).



Algorithm 1 Optimal Decision(Ug, A)
Require: Ug ≥ 0 ∨ A 6= ∅
Ensure: δ(Ug,A)

U ⇐∞ {U is the current cost.}
Q ⇐ π0

π1
{Note that E[P ] = 1

1+Q from (12).}
while A 6= ∅ ∧ U > Ug do

a ⇐ firstElementOf(A)
A ⇐ A \ a
r ⇐ getFeedback(a)
if r = 0 then

Q ⇐ Q · 1−F (a)
1−T (a)

else
Q ⇐ Q · F (a)

T (a)
end if
U ⇐ min

(
CfpQ
1+Q ,

Cfn

1+Q

)

end while
if 1

1+Q >
Cfp

Cfp+Cfn
then

Raise Alarm
else

No Alarm
end if

We present a set of experiments to evaluate the average
cost of the collaborative detection using the Bayesian-based
aggregation model in comparison with the simple average
and the weighted average models. Each experimental result
presented in this section is derived from the average of a large
number of replications with an overall negligible confidence
interval.

A. Simulation Setting

The simulation environment uses an IDN of n peers. Each
IDS is represented by two parameters, expertise level l and
decision threshold τp. At the beginning, each peer receives
an initial acquaintance list containing all the other neighbor
nodes. In the process of the collaborative intrusion detection,
a node sends out intrusion information to its acquaintances to
request for an intrusion assessment. The feedbacks collected
from others are used to make a final decision, i.e., whether
to raise an alarm or not. Different feedback aggregation
schemes can be used to make such decisions. We implement
three different feedback mechanisms, namely, simple average
aggregation, weighted average aggregation, and Bayesian ag-
gregation. We compare their efficiency by the average cost of
false decisions.

1) Simple Average Model: If the average of all feedback is
larger than a threshold then raise an alarm.

δSA =





1 (Alarm) if
∑n

k=1 yk

n ≥ τSA,

0 (No alarm) otherwise,
(13)

where τSA is the decision threshold for the simple average
algorithm. It is set to be 0.5 if no cost is considered for making

TABLE II
EXPERIMENTAL PARAMETERS

Parameter Value meaning

τSA 0.5 decision threshold of the simple average model
τWA 0.5 decision threshold of the weighted average model

n 10 number of IDSs in the network
d 0.5 difficulty levels of intrusions and test messages
λ 0.9 forgetting factor

π0, π1 0.5 probability of no-attack and under-attack

false decisions.
2) Weighed Average Model: Weights are assigned to feed-

backs from different acquaintances to distinguish their detec-
tion capability. For example, high expertise IDSs are signed
with larger weight compared to low expertise IDSs. In [4], [5],
and [6], the weights are the trust values of IDSs:

δWA =





1 (Alarm) if
∑n

k=1 wkyk∑n
k=1 wk

≥ τWA,

0 (No alarm) otherwise,

(14)

where wk is the weight of the feedback from acquaintance
k, which is the trust value of acquaintance k in [4], [5],
and [6]. τWA is the decision threshold for the weighted average
algorithm. It is fixed to be 0.5 since no cost is considered for
FP and FN. In this simulation, we adopt trust values from [6]
to be the weights of feedbacks.

3) Bayesian aggregation Model: As described in section
IV-B, the Bayesian aggregation approach models each IDS
with two features (FP and TP) instead of a single trust value.
It also considers the costs of false positive and false negative
decisions. A Bayesian decision model investigates the cost of
all possible decisions and chooses a decision which leads to a
minimal expected cost. The parameters we use are shown in
Table II.

B. Modeling of a single IDS

To reflect the intrusion detection capability of each peer, we
use a Beta distribution to simulate the decision model of an
IDS. A Beta density function is given by:

f(p̄|ᾱ, β̄) =
1

B(ᾱ, β̄)
p̄ᾱ−1(1− p̄)β̄−1;

B(ᾱ, β̄) =
∫ 1

0

tᾱ−1(1− t)β̄−1dt, (15)

where p̄ ∈ [0, 1] is the probability of intrusion assessed by the
host IDS. f(p̄|ᾱ, β̄) is the probability that a peer with expertise
level l answers with a value of p̄ to an intrusion assessment
of difficulty level d ∈ [0, 1]. Higher values of d are associated
with attacks that are difficult to detect, i.e., many peers may fail
to identify them. Higher values of l imply a higher probability
of producing correct intrusion assessment.

τp is the decision threshold of p̄. If p̄ > τp, a peer sends
feedback 1 (i.e., under-attack); otherwise, feedback 0(i.e., no-
attack) is generated. Let r ∈ {0, 1} be the expected result



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.2  0.4  0.6  0.8  1

R
at

e

Expertise

FP
FN

Fig. 2. FP and FN vs. Expertise Level

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

R
at

e

Threshold

FP
FN

Fig. 3. FP and FN vs. Threshold τp

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.2  0.4  0.6  0.8  1

C
os

t

Threshold

Simple
Weighted
Bayesian

Fig. 4. Average Cost vs. Threshold τp

of detection. r = 1 indicates that there is an intrusion and
r = 0 indicates that there is no intrusion. We define ᾱ and β̄
as follows.

ᾱ = 1 +
l(1− d)
d(1− l)

r,

β̄ = 1 +
l(1− d)
d(1− l)

(1− r). (16)

For a fixed difficulty level, the preceding model assigns
higher probabilities of producing correct intrusion diagnosis
to peers with higher level of expertise. A peer with expertise
level l has a lower probability of producing correct intrusion
diagnosis for intrusions of higher detection difficulty (d > l).
l = 1 or d = 0 represent extreme cases where the peer can
always accurately detect the intrusion. This is reflected in the
Beta distribution by ᾱ, β̄ →∞.

Figure 2 shows that both the FP and FN decrease when
the expertise level of an IDS increases. We notice that the
curves of FP and FN overlap. This is because the IDS detection
density distributions are symmetric under r = 0 and r =
1. Figure 3 shows that the FP decreases with the decision
threshold while the FN increases with the decision threshold.
When the decision threshold is 0, all feedbacks are positive;
when the decision threshold is 1, all feedbacks are negative.

C. Detection Accuracy and Cost

One of the most important metrics to evaluate the efficiency
of a feedback aggregation is the average cost of incorrect
decisions. We take into consideration the fact that the costs of
FP decisions and FN decisions are different. In the following
subsections, we evaluate the cost efficiency of the Bayesian-
based aggregation algorithm compared with other models
under homogeneous and heterogeneous network settings. Then
we study the relation between decision cost and the consulted
number of acquaintances.

1) Cost Under Homogeneous Environment: In this experi-
ment, we study the efficiency of the three aggregation models
under a homogeneous network setting, i.e., all acquaintances
have the same parameters. We fix the expertise levels of
all nodes to be 0.5 (i.e., medium expertise) and set Cfp =
Cfn = 1 for the fairness of comparison, since the simple
average and the weighted average models do not account for

the cost difference between FP and FN. We fix the decision
threshold for each IDS (τp) to 0.1 for the first batch run
and then increase it by 0.1 in each following batch run until
it reaches 1.0. We measure the average cost of the three
aggregation models. As shown in Figure 4, the average costs
yielded by Bayesian aggregation remains the lowest among the
three under all threshold settings. The costs of the weighted
average aggregation and the simple average aggregation are
close to each other. This is because under such a homogeneous
environment, the weights of all IDSs are the same. Therefore,
the difference between the weighted average and the simple
average is not substantial. We also observe that changing the
threshold has a big impact on the costs of the weighted average
model and the simple average model, while the cost of the
Bayesian model changes only slightly with the threshold. All
costs reach a minimum when the threshold is 0.5 and increase
when it deviates from 0.5.

2) Cost Under Heterogeneous Environment: In this exper-
iment, we fix the expertise level of all peers to 0.5 and assign
decision thresholds ranging from 0.1 to 0.9 to node 1 to 9
respectively with an increment of 0.1. We set Cfp = 1 and
Cfn = 5 to reflect the cost difference between FP and FN. We
observe the detection accuracy in terms of FP and FN rates
and the average costs of false decisions at node 0 when three
different feedback aggregation models are used.

Figure 5 shows that the average costs of the three different
models converge after a few days of learning process. The
cost of Bayesian model starts with a high value and drops
drastically in the first 10 days, and finally converges to a stable
value on day 30. We then plot in Figure 6 the steady state
FP, FN, and the cost. We observe that the weighted average
model shows significant improvement in the FP and FN rates
and cost compared to the simple average model. The Bayesian
aggregation model has a higher FP rate and a lower FN rate
compared to the other two models. However, its cost is the
lowest among the three. This is because the Bayesian model
trades some FP with FN to reduce the overall cost of false
decisions.

3) Cost and the Number of Acquaintances: In this experi-
ment, we study the relation between average cost due to false
decisions and the number of acquaintances that the host IDS
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aggregation models
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tances Consulted

consults. We fix the expertise level of all IDSs in the network
to 0.3, 0.5, 0.7, 0.8 respectively for different batch runs. Every
IDS decision threshold is fixed to 0.5 in all cases. We observe
in Figure 7 that, under all cases, the average cost decreases
when more acquaintances are consulted. We also notice that
for higher expertise acquaintances, fewer consultations are
needed to reach the cost goal. For instance, in our experiments,
the host IDS only needs to consult 2 acquaintances on the
average to reach a cost of 0.1, under the case where all ac-
quaintances are with high expertise level 0.8. Correspondingly,
the number of acquaintances needed are 4 and 15 on the
average when the acquaintance expertise levels are 0.7 and
0.5 respectively. In the case that all acquaintances are 0.3
(i.e., of low expertise), the utility goal can not be reached
after consulting a small number (i.e., < 20) of acquaintances.

D. Robustness and Scalability of the System

Robustness and scalability are two important features of a
CIDN. Our proposed CIDN is robust to malicious insiders
since it inherits the robust trust management model from
[6] where malicious insiders can be quickly discovered and
removed from the acquaintance list. The use of probation
period in acquaintance management also effectively avoids
the impact from malicious newcomers. This CIDN is scalable
since the number of acquaintances needed for consultation
only depends on the expertise level of those acquaintances
rather than the size of the network. Hence the message rate
from/to each IDS does not grow with the number of nodes in
the network. Furthermore, the dynamic consultation algorithm
minimizes the number of consultation messages needed for
collaborative intrusion detections.

VI. CONCLUSION

In this paper, we have described an architecture for a col-
laborative intrusion detection network. We have then proposed
a Bayesian decision based feedback aggregation algorithm.
The experimental results indicate that the Bayesian approach
reduces the cost of risks from false decisions in comparison to
the simple average and weighted average aggregation models.
As part of future work, we intent to develop and deploy a real

life CIDN using existing intrusion detection systems. Further-
more, we plan to design an effective acquaintance management
system to enable robust and effective collaborations among
IDSs with a low communication overhead.

REFERENCES

[1] The honeynet project. know your enemy: Fast-flux service networks, 13
July, 2007. http://www.honeynet.org/book/export/html/130.

[2] M. Cai, K. Hwang, Y. Kwok, S. Song, and Y. Chen. Collaborative
internet worm containment. IEEE Security & Privacy, 3(3):25–33, 2005.

[3] F. Cuppens and A. Miege. Alert correlation in a cooperative intrusion
detection framework. In EEE Symposium on Security and Privacy, pages
202–215, 2002.

[4] C. Duma, M. Karresand, N. Shahmehri, and G. Caronni. A trust-aware,
p2p-based overlay for intrusion detection. In DEXA Workshops, 2006.

[5] C. Fung, O. Baysal, J. Zhang, I. Aib, and R. Boutaba. Trust management
for host-based collaborative intrusion detection. In 19th IFIP/IEEE
International Workshop on Distributed Systems, 2008.

[6] C. Fung, J. Zhang, I. Aib, and R. Boutaba. Robust and scalable trust
management for collaborative intrusion detection. In 11th IFIP/IEEE
International Symposium on Integrated Network Management, 2009.

[7] A. Ghosh and S. Sen. Agent-based distributed intrusion alert system.
In Proceedings of the 6th International Workshop on Distributed Com-
puting (IWDC04). Springer, 2004.

[8] R. Janakiraman and M. Zhang. Indra: a peer-to-peer approach to
network intrusion detection and prevention. Proceedings of the 12th
IEEE International Workshops on Enabling Technologies, 2003.

[9] A. Jøsang and R. Ismail. The beta reputation system. Proceedings of
the 15th Bled Electronic Commerce Conference, 2002.

[10] J. Mirkovic and P. Reiher. A taxonomy of ddos attack and ddos defense
mechanisms. SIGCOMM Comput. Commun. Rev., 34(2):39–53, 2004.

[11] K. Nguyen, T. Alpcan, and T. Başar. A Decentralized Bayesian Attack
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