PERSISTENT NAMING FOR P2P WEB HOSTING

Presented By

Md. Faizul Bari

PhD Student

David R. Cheriton School of Computer Science

University of Waterloo

Web Hosting on P2P Networks

- Problems with client/server architecture:
 - Flash crowds
 - Poor scalability even with high end servers and geographically distributed CDNs
 - Human intervention (DNS redirection)
 - Administrative overhead
 - Hosting expenses

Web Hosting on P2P Networks

- Advantages of P2P web hosting
 - No single point-of-failure
 - Self-CHOP (configuring, healing, organizing, protection)
 - In-network caching improves performance
 - Lower cost
 - Freedom of speech
 - Publisher anonymity

Research Challenges for Web Hosting on P2P Networks

- Highly dynamic network structure
- Content dynamism
- Content placement
- No uptime guarantees
- No end-to-end trust framework
- Firewalls and NATs
- ...

only to name a few

Our objective:

Provide a persistent naming scheme for web hosting on P2P networks

So What are the Research Challenges for Naming?

- Location and time independent naming
 - Internet: URLs are bound to particular hosts
 - P2P: Any peer with a valid copy can be a source

- Distributed name registration and resolution
 - DNS is not a suitable solution in the P2P context

So What are the Research Challenges for Naming?

- Names must be attached to content
 - Independent of peer
- Flexible and human friendly names

Persistent hyperlinks or bookmarks

- Plexus Routing
- pWeb Architecture
- Naming Scheme
- Experimental Results
- Conclusion

Plexus: Index Clustering

Cluster

C = set of cluster heads

- Pattern
- Cluster head

 $Q \subseteq P \Rightarrow qSet(Q) \cap advSet(P) \neq \phi$

Linear code, C < n, k, d>

Cluster head ⇔ *Codeword*

Generator matrix based routing

$$G = \begin{bmatrix} 47 \\ 23 \\ 15 \\ 0E \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 \end{bmatrix}$$

<7, 4, 3> Hamming code

Plexus: Routing

■ Observation: C is closed under ⊕ operation

- Plexus Routing
- pWeb Architecture
- Naming Scheme
- Experimental Results
- Conclusion

pWeb Architecture

- Plexus Routing
- pWeb Architecture
- Naming Scheme
- Experimental Results
- Conclusion

Naming Scheme -> Name Structure

- Names are called pRL
 - pWeb Resource Locator

Naming Scheme -> Name Registration

- Apply Hash
- Encode
- List Decode
- Route
- CheckUniqueness
- Publish

Naming Scheme -> Name Registration

- Apply Hash
- Encode
- List Decode
- Route
- CheckUniqueness
- Publish
- Replicate

Naming Scheme -> Name Resolution

Naming Scheme -> Name Resolution

- Apply Hash
- Encode
- List Decode
- Route
- Return GroupUUID
- List Decode
- Map to Codewords
- Route
- Group Leader's IP:port

- Plexus Routing
- pWeb Architecture
- Naming Scheme
- Experimental Results
- Conclusion

Experimental Results

(a) Name record count

Experimental Results

120

100

60

20

5000

Hop Count

(a) Worst case name registration hop count

Published Name (b) Worst case name resolution hop count

25000

35000

45000

15000

-Average Hon

(c) % of peer accessed/registration

(d) % of peer accessed/resolution

- Plexus Routing
- pWeb Architecture
- Naming Scheme
- Experimental Results
- Conclusion

Related Work

- Information Centric Networks
 - NetInf
 - DONA
 - CCN
- P2P Networks
 - BitTorrent: Hash of file chunk

Summary

- We have proposed a naming scheme
 - That is
 - Distributed
 - Persistent
 - Scalable and
 - Fault-tolerant
- It provides a flat namespace with support for both Human friendly and secure distribute names

