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Motivation

e Cyber intrusions are more sophisticated
and harder to detect

— Phishing, Malware, Botnet, Spam, DDoS
— 2 M new malware per month (McCafe)

infection S

Private
info




Intrusion Detection

* [Intrusion Detection System (IDS)
— Host-based and Network-based
— Signature-based and Anomaly-based

« Collaborative Intrusion Detection

— Share alerts (Indra)

— Share data, logs (DShiled)
— Share knowledge (blacklists, signatures and
detection rules)



Why Share Detection Knowledge?
 Data Sharing

— Information breaching
— Privacy concern

 Knowledge Sharing
— No security vendor has full knowledge

— Exchange knowledge to increase detection
rate

— less privacy concern



Challenges

Propagation efficiency
— Knowledge sent to nodes with similar interests?

Scalability

— Work well for large network size?

Robustness
— Resist to common insider attacks?

Fairness and incentive
— Similar credits, similar benefit
— More contribution, more benefit



SMURFEN

A knowledge sharing system for intrusion
detection networks

— Peer-to-peer topology

— Knowledge sharing

— Feedback collecting

— Mutual consensus convergence



Architecture
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Feedback Collection




Propagation Design

« A Two level game design
— Low level - a public warefare
— High level - a private warefare

— Control variables are sending rate and
requesting rate

— Connection between public and private
warefare
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An Example
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An Example (con.)
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The two level game posses a Nash Equilibrium
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Figure 1. Efficiency of Rule Propagation
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Return Benefit
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Figure 2. Fairness of Rule Propagation
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Influence

Evaluation — Robustness
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Figure 3. Robustness of Rule Propagation
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Conclusion and Future Work

 Propose a framework for knowledge
sharing collaborative intrusion
detection

* A rule propagation model based on a
multiplayer game
— Achieve the properties of efficiency,
scalability, fairness, and robustness

e As future work, we intend to show
more insider attacks and defenses

15



Thank You!
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