
Dynamic Resource Allocation for Spot Markets in Clouds

Qi Zhang, Eren Gürses, Raouf Boutaba
David R. Cheriton School of Computer Science

University of Waterloo
Waterloo, ON N2L 3G1

{q8zhang, egurses, rboutaba}@uwaterloo.ca

Jin Xiao
IT Convergence Engineering

POSTECH
Pohang, South Korea

jinxiao@postech.ac.kr

Abstract

Cloud computing promises on-demand provisioning of
resource to applications and services. To deal with dy-
namically fluctuating resource demands, market-driven
resource allocation has been proposed and recently im-
plemented by commercial cloud providers like Amazon
EC2. In this environment, cloud resources are offered in
distinct types of virtual machines (VMs) and the cloud
provider runs a continuous market-driven mechanism for
each VM type with the goal of achieving maximum rev-
enue over time. However, as demand of each VM type
can fluctuate independently at run time, it becomes a
challenging problem to dynamically allocate data cen-
ter resources to each spot market to maximize cloud
provider’s total revenue. In this paper, we present a so-
lution to this problem that consists of 2 parts: (1) market
analysis for forecasting the demand for each spot market,
and (2) a dynamic scheduling and consolidation mecha-
nism that allocate resource to each spot market to maxi-
mize total revenue. As optimally allocating resources for
revenue maximization is a NP-hard problem, we show
our algorithms can approximate the optimal solutions
to this problem under both fixed and variable pricing
schemes. Simulation studies confirm the effectiveness
of our approach.

1 Introduction

Cloud computing aims at providing computing resources
as public utilities like water and electricity. In a cloud
computing environment, resources are typically offered
in distinct types of VMs that a customer can purchase on-
demand. Traditionally, cloud providers specify a fixed
price for each type of VM offerings. However, it has
been shown that this pricing scheme is often inefficient
due to lack of incentives to rationalize demand. On one
hand, when total demand is much lower than data cen-
ter capacity, the data center becomes under-utilized, in

which case the cloud provider wishes to encourage cus-
tomers to submit more requests. On the other hand, when
total demand rises over the data center capacity, it is
desirable for the cloud provider to incentivize the cus-
tomers to reduce their demand. A promising solution to
this problem is to use market economy to reshape the
demand by dynamically adjusting the price of each VM
type. Specifically, when total demand is high, the mech-
anism raises the price to ensure resources are allocated
to users who value them the most. When total demand
is low, the mechanism lowers the prices and provides in-
centive for customers to increase their demand. Market-
driven resource allocation has been applied to Grid com-
puting environments in the past [5, 6]. Recently, it has
also been adopted to cloud computing. In December
2009, Amazon EC2 launched its spot instance service
to sell its unused data center capacity using a market-
driven resource allocation mechanism. Even though this
is only the first step towards a full-fledged market-driven
cloud service, it has already received considerable atten-
tion from both industry and academia (e.g. [12, 9]).

Amazon EC2’s spot instance mechanism shares many
similarities with the standard uniform price auction
mechanism: The provider assigns resources to bidders
in decreasing order of their bids until all available re-
sources have been allocated or all resource requests have
been satisfied. The selling price (i.e. the spot price) is
equal to the lowest winning bid. It is known that a seal-
bid uniform price auction is a truthful auction, providing
the supply level is adjustable ex post (i.e., after the bids
have been decided) [4]. Dynamic supply adjustment also
prevents small size collusions that been observed for In-
ternet auctions such as eBay auction. Recently, the op-
timal supply adjustment problem for a single uniform
price auction has been studied [4].

However, as multiple spot markets operate on a shared
resource pool in each data center, a critical question
arises regarding how to best distribute data center capaci-
ties to each individual spot market. A naive solution is to

1

employ a static allocation strategy that pre-computes the
resource allocation to each spot market. There are sev-
eral drawbacks to this approach. First, the free capacity
of a data center can change due to dynamic conditions
such as machine failure. Second, as spot markets are de-
signed to handle fluctuating demands, a static allocation
strategy can lead to situations where certain spot markets
are over-supplied while some others are under-supplied.
While over-supplying resources to a market may lead to
wasted resources, under-supplying resources can lead to
revenue loss. In both cases, a static allocation strategy
may lead to sub-optimal outcomes. Therefore, it is im-
portant to dynamically adjust supply for each spot mar-
ket based on current market situation, so that resources
are allocated to users who value them the most.

In this paper, we study the problem of dynamic re-
source allocation for simultaneous spot markets. Our
goal is to allocate free data center capacity to each spot
market in a timely manner that maximizes the total rev-
enue. Our solution approach consists of 2 parts: (1)
Modeling market demand using time-series analysis and
forecast the future demand, and (2) Dynamic pricing and
scheduling spot requests to maximize the expected rev-
enue over time. In particular, we consider both fixed
and variable pricing schemes. As the optimal resource
allocation problem is a variant of the NP-hard multiple
knapsack problem (MKP), we show our algorithms can
approximate the optimal solutions to this problem under
both schemes. The actual performance of our algorithms
are demonstrated using simulations.

This paper is organized as follows: We provide an
overview of Amazon’s spot instance mechanism in Sec-
tion 2, Section 3 describes our proposed dynamic re-
source allocation framework. We describe the 2 steps
of our solution, namely demand prediction and dynamic
resource allocation in Section 4 and 5 respectively. Sec-
tion 6 presents our simulation results, Section 7 discusses
related work and Section 8 concludes the paper.

2 Overview of Amazon Spot Instance
Mechanism

Motivated by low resource utilization, Amazon EC2 in-
troduced the spot instance mechanism to allow customers
to bid for unused Amazon EC2 capacity [1]. Currently,
Amazon EC2 spot services are available for 8 types of
VMs, each of which has different resource capacity for
CPU, memory and disk. Amazon EC2 runs one spot mar-
ket for each VM type in each availability zone [1]. All
spot markets share the free data center capacity, which
is the remaining capacity after serving all the guaranteed
instances1.

1Amazon currently provides 3 instance types: reserved, on-demand
and spot. In this paper, the term guaranteed instances refer to both

Figure 1: Price of a m1.small linux spot instance in US-
West-1 from Sept. 24-Sept. 30, 2010

To use the spot instance service, a customer submits a
request that specifies the type, the number of instances,
the region desired and the biding price per instance-hour.
If the bidding price exceeds the current spot price, the
request is fulfilled and each spot instance will run until it
finishes or spot price exceeds the current bid. In the for-
mer case, the customer is charged for the partial-hour us-
age before it finishes. In the latter case, the VM is termi-
nated without notice, and the customer is not charged for
his usage during the partial hour. A common strategy for
handling spot instance termination is to periodically save
the work using progress checkpoints [12]. Notice that if
a user submits a request that asks for many instances of
the same type, it is possible that only a fraction of them is
satisfied. Hence, it is helpful to think of a multi-instance
request as a set of independent single-instance requests.
In addition, Amazon provides the price history to help
customers decide their bids. Figure 1 shows an example
price history graph obtained from [2].

Amazon’s spot instance mechanism can be described
as a continuous seal-bid uniform price auction, where
identical goods are sold at identical price. It is known
that a single round seal-bid uniform price auction is a
truthful mechanism if the supply level is adjustable [4].
Therefore, each player’s optimal strategy is to report its
true valuation in its request. Identical price ensures fair-
ness of the auction outcome, and truthfulness ensures
that Amazon can adjust the supply to maximize revenue.

On the implementation side, Amazon’s spot instance
mechanism operates in a continuous fashion. A spot in-
stance can start running as soon as the request is sub-
mitted and bidding price is higher than the current spot
price. This can be implemented by having the instance
with high bidding price to preempt the instance with a
low bidding price, when there is no capacity for schedul-

reserved and on-demand instances, which have guaranteed resource
availability.

2

Figure 2: System Model

ing both instances. The spot price may be adjusted when
there are no instances running at the current price.

However, as multiple spot markets share the same re-
source pool, it is unclear how to best differentiate differ-
ent instance types to maximize the total revenue. This is
the problem we try to address in this paper.

3 A Dynamic Resource Allocation Frame-
work for Simultaneous Cloud Markets

Our proposed dynamic resource allocation framework
for multiple simultaneous spot markets is shown in Fig-
ure 2. Each physical machine run multiple types of VM
instances, some are guaranteed instances while others are
spot instances. At run-time, the Market Analyzer peri-
odically analyzes the market situation and forecast the
future demand and supply level. Specifically it predicts
the future demand curve as well as supply level (i.e. free
capacity) over time period [t0, t0 + T] at sampling inter-
val ∆t. Based on the prediction, the Capacity Planner
decides the expected price of each type of VM in each
market. This allows the VM Scheduler to make online
scheduling decisions for revenue maximization. The de-
tailed implementation of each component is described in
the sections below.

4 Demand Modeling and Prediction

The Market Analyzer is required in our framework as
we try to adjust price of each spot market for future de-
mands. More specifically, we want to predict the demand
curves in time period [t0, t0 + T] for each spot market,
where t0 denotes the current time and T denotes the pre-
diction period. At any time t between t0 and t0 + T , a
demand curve can be constructed capturing the relation-
ship between quantity of acceptable requests and bidding
price, as shown in Figure 3. Let pi denote ith possible

Figure 3: Example demand curve at time t and over time

bidding price in decreasing order of their values, and di,t
denote the corresponding requests that bid at price pi at
time t, and qi,t denote the demand that bids at price at
least pi at time t. According to the spot market mecha-
nism, if the spot price ps is set to pi, then we are allowed
to schedule qi,t VM requests. Generally speaking, qi,t is
a non-increasing function of pi.

Our approach for predicting the expected demand
curve is as follows: Recall the bidding price of each indi-
vidual VM request is truthful and independent of the cur-
rent market situation, consequently we can model the de-
mand quantity di,t independently for each pi. Hence we
use a time-series method to forecast the future demand
di,t for each possible value of pi for t0 ≤ t ≤ t0 + T
using past demand history. Forecasting future demand in
general has been studied extensively in both economics
and computer systems [11]. We adopt a simple auto-
regressive (AR) model. It estimates the value di,t using
the historical values di,t−1, ..., di,t−k as:

di,t =

k∑
j=1

ϕjdi,t−j + ϵt

where ϕ1, ϕ2, ..., ϕk constitute a set of parameters for
historical values, and ϵt is uncorrelated white noise with
mean 0 and standard deviation σϵ. All of the above pa-
rameters can be computed from historical demand data.
Using the AR model, we can compute an expected de-
mand curve for the next period [t0, t0 + T]. AR model
and its more general forms (i.e. ARMA and ARIMA)
[11] are well established techniques in the literature.

We believe an AR model is appropriate for several rea-
sons. First, comparing to machine-learning based ap-
proaches such as neural networks, AR is light-weight
and easy to implement. Second, comparing to marko-
vian models which only capture long-term trends, an AR
model is capable of capturing short-term trends, which is
important for predictive resource allocation.

5 Dynamic Revenue Maximization for
Multiple Cloud Markets

The estimated supply curve allows us to design algo-
rithms to achieve trade-offs between different spot mar-

3

kets. The main objective of the problem is to schedule
requests of each spot market to maximize the expected
revenue over the next prediction period, without exceed-
ing capacities of individual machines.

We shall present our solution approach for two differ-
ent pricing schemes: In the fixed pricing scheme, price of
a VM type does not vary with the current supply and de-
mand. The solution for this scheme is already applicable
for scheduling guaranteed instances. On the other hand,
in the uniform pricing scheme, the price of a VM type is
adjustable at run-time. For the case, we present an algo-
rithm that estimates the best price for maximizing the ex-
pected total revenue. Together with scheduling algorithm
proposed for the fixed pricing scheme, the framework is
expected to maximize total revenue over time.

5.1 Dynamic Scheduling and Server Con-
solidation for Fixed Pricing Scheme

In the fixed pricing scheme, each VM type has a fixed
price that does not fluctuate with the current supply
and demand. The VM revenue maximization problem
(VRMP) in this case can be modeled as a MKP as fol-
lows: Given a set of machines M and D resource types
(e.g. CPU, memory and disk), where each machine
m ∈ M has a capacity cdm for each resource type d ∈ D.
There is a set of VMs V to be scheduled. Each VM i has
a size aid for each d ∈ D and a value vi. The objective
is to schedule a set of VMs to maximize the total value,
as represented by the following Integer Program (IP):

max
∑
i∈V

∑
m∈M

vixim

subject to
∑
i∈V

aidxim ≤ cdm ∀m ∈ M,d ∈ D

xim ∈ {0, 1} ∀i ∈ V,m ∈ m

MKP is an NP-hard combinatorial optimization problem.
Our solution to this problem is based on a 1

2 − ϵ local
search algorithm given in [8]. As depicted by Algorithm
1, the algorithm proceeds in rounds. In each round, if
there exists a potential new configuration for a single ma-
chine m by scheduling, migrating and preempting VMs,
the scheduler will try to carry out this scheduling opera-
tion. Our algorithm stops when no operation can improve
the current solution. To achieve fast convergence rate,
We require each local search operation to improve solu-
tion quality for each machine m by at least (1 + ϵ). This
cause the algorithm to lose an approximation factor of ϵ.
This algorithm can be used both as a scheduling and a
server consolidation algorithm, as it simply tries to max-
imize the values of VMs scheduled on each machine. To
minimize the disruption, the scheduler first tries to sched-
ule all VMs using available free capacity. When the total

Algorithm 1 Local Search Approximation Algorithm
Local(P) for VRMP

1: for ∀m ∈ M do
2: Find a set of VMs S′ that among pending requests and

the current running VMs on the machine m, maximize
the total value R(S′) =

∑
j∈S′ vj .

3: end for
4: while ∃ a machine m such that R(S′) ≥ R(S) do
5: Schedule the requests in S′\S, preempt and migrate

VMs in S\S′ if necessary.
6: end while

demand is reaching data center capacity, the scheduler
will start performing preemption and migration.

5.2 Price Estimation for the Uniform Pric-
ing Scheme

We now consider the case where price of each instance
vary with the demand curve and the resource availabil-
ity. Formally, this dynamic revenue maximization with
variable price (DRMVP) problem is identical to VRMP
except that individual VMs no longer have a fixed price.
Rather, the price is determined by the estimated demand
curve Rτ (qτ). This can be modeled by the following IP:

max
∑
τ∈T

Rτ (qτ)

subject to
∑
m∈M

xτm = qτ ∀τ ∈ T∑
τ∈T

aτdxτm ≤ cmd ∀m ∈ m, d ∈ D

xτm, qτ ∈ N ∪ {0} ∀m ∈ m, τ ∈ T

This program is more difficult to solve than the VRMP,
as the objective function is non-linear. Specifically, the
revenue function Rτ (qτ) for a single VM type is a piece-
wise linear function. Figure 4(a) illustrates Rτ (qτ) using
the example given in Figure 3, where the slope of each
linear segment is equal to p1, p2 and p3 respectively. It
can be observed that in some situations, scheduling a VM
can cause the current market price to be lowered, result-
ing in a sharp drop in total revenue. Even though we can
define R

′

τ (qτ) = maxq≤qτ {Rτ (q)} and use R
′

τ (qτ) in-
stead in DRMVP (since R

′

τ (qτ) is an achievable revenue
function by reducing number of scheduled instances), the
function R

′

τ (qτ) is still non-linear. The simplest solution
to problem is to try every possible combination of prices
and solve each case independently. However, this can
lead to a large number of cases when the number of pos-
sible prices is large.

Motivated by similar work on market clearing algo-
rithms for piecewise linear objective revenue functions

4

(a) Rτ (qτ) (b) R
′
τ (qτ) (c) Reτ (qτ) (d) An example illustrating Lemma 1

Figure 4: Revenue vs Supply Curve For a Single Market

[10], our approach to deal with this issue is to ap-
proximate R

′

τ (qτ) using a concave envelope function
Reτ (qτ). Essentially, Reτ (qτ) is computed by con-
structing a upper convex hull using the extreme points
in R

′

τ (qτ). It is possible to prove the following property
for Reτ (qτ):

Lemma 1. Reτ (qτ) ≤ 2 ·R′

τ (qτ) for any qτ .

Proof. Consider any qτ . Assume Re
′

τ (qτ) is on a lin-
ear segment with extreme points (qi, Rei) and (qj , Rej)
where i ≤ j. By definition of convex hull, Rei and
Rej are also points on R

′

τ . (This is illustrated in Figure
4(d), where i = 1 and j = 3.) Let their corresponding
slope (i.e. unit price) in R

′

τ be piτ and pjτ respectively.
Clearly, piτ ≥ pjτ , Reτ (qi) = qi · piτ and Reτ (qj) =
qj · pjτ . The slope ps of the segment of Reτ (qτ) can
be bounded by ps =

qj ·pjτ−qi·piτ

qj−qi
≤ pjτ . At point

(qτ , Reτ (qτ)), the total overestimate of Reτ (qτ) can be
upper bounded by ∆ = Reτ (qτ)−R

′

τ (qτ) ≤ (qτ − qi) ·
ps ≤ qτ · pjτ . This is because R

′

τ (qτ) is non-decreasing
between qi and qj . Now, the actual value of R

′

τ (qτ) can
be lower bounded by qτ · pjτ , as when qτ ≤ qjτ the unit
price is at least pjτ . Combining the arguments, we get
Reτ (qτ)−R

′

τ (qτ) ≤ R
′

τ (qτ). The lemma follows.

Lemma 1 essentially suggests that we use the concave
envelope function Reτ (qτ) to approximate piecewise lin-
ear function R

′

τ (qτ), losing an factor at most 2. The key
advantage of using a concave objective function is that
now we can now treat each individual VM request sepa-
raterly. Define vqτ = Reτ (qτ) − Reτ (qτ − 1) as value
for scheduling the qth request of type τ . Since Reτ (qτ)
is concave, vqτ is a non-increasing function of q. This
definition of vqτ is similar to the concept of marginal
value in economics. Given the value of each request, we
can now construct an instance VRMP’ where each VM
has value according to differentials of Reτ (qτ).

Theorem 1. Running Algorithm 1 using vqτ defined
above is a 1

4 − ϵ approximation algorithm for DRMVP.

Proof. First, it is evident that the optimal solution of DR-
MVP has a corresponding solution in VRMP’ with at
least the same revenue, as Reτ (qτ) ≥ R′

τ (qτ). Now, we

show that every solution of VRMP’ has a corresponding
solution in DRMVP with at least half the total revenue.
Indeed, as values of VMs are non-increasing, any solu-
tion of VRMP’ that schedules qτ VMs of type τ has a
corresponding solution in DRMVP that schedules the qτ
most valuable VMs with at least 1

2 the revenue, accord-
ing to Lemma 1. As Algorithm 1 is a 1

2 approximation
algorithm of VRMP’, the theorem is proven.

Theorem 1 provides a worst bound on the performance
of the algorithm. Our simulation shows the algorithm
often performs quite well, even though VRMP and DR-
MVP are only the abstract representation of the actual
scheduling problems. As for implementation, the capac-
ity planner is responsible for setting the minimum price
for the next period using the algorithm in Theorem 1.
The scheduler runs Algorithm 1 for scheduling VM in-
stances at run-time.

6 Experiments

We have implemented a prototype of our framework us-
ing CloudSim [3], a Java based simulator for simulating
Cloud computing environments. We simulated a 1000
machine data center capable of hosting 8 instance types
available in Amazon EC2. The spot requests for each
VM type arrive according to a non-homogenous pois-
son process that may have artificial high and arrival rate
periods (i.e. demand spikes and valleys). The bidding
prices and task durations for each VM type are generated
from a normal distribution. As for scheduling policies,
we implemented both static allocation policy where re-
source assignment on each machine is pre-computed (by
solving a knapsack problem), and the dynamic alloca-
tion policy according to Algorithm 1. In our simulation,
spot prices are recomputed once per hour. We define
the income rate as the sum of prices of all the sched-
uled requests. Figure 5 compares the income rate of the
two policies for a duration of 16 hours, when the aver-
age arrival rate is steady over time. The dynamic al-
location policy (i.e. Algorithm 1) slightly outperforms
static policy (about 10% gain), as it considers multiple
machine configurations compared to a single configura-
tion that the static policy uses. This performance gain is

5

 2000

 2200

 2400

 2600

 2800

 3000

 3200

 3400

 0 2 4 6 8 10 12 14 16

In
co

m
e

R
at

e
(d

ol
la

rs
/h

ou
r)

Time (hours)

Static Allocation Policy
Dynamic Allocation Policy

Figure 5: Income rate with static demands

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 2 4 6 8 10 12 14 16

In
co

m
e

R
at

e
(d

ol
la

rs
/h

ou
r)

Time (hours)

Static Allocation Policy
Dynamic Allocation Policy

Figure 6: Income rate with fluctuating demands

amplified when the demand pattern changes over time,
as shown in Figure 6. This is because the capacity plan-
ner is able to adjust the price according to the demand
pattern. Finally, although our algorithm does not con-
sider the revenue loss due to VM preemption, we have
computed the total revenue loss according to Amazon’s
pricing policy. The average results are shown in Table
1. It can be observed that the dynamic allocation pol-
icy causes more revenue loss, but this negative impact
is outweighed by the positive revenue gain. It is part of
our future work to refine our algorithms to consider VM
migration and preemption cost.

7 Related Work

Market-driven resource allocation has been studied in
the past, particularly for Grid Computing environments
[5, 6]. However, the existing work do apply to Cloud
computing as Grid Computing does not use real currency.
Furthermore, most of the scheduling algorithms for Grid
and parallel computing focus on minimizing makespan
rather than maximizing revenue. We show in this pa-
per that maximum profit scheduling can be formulated
as a dynamic MKP. When the price is adjustable, sim-
ilar knapsack problems with piece-wise linear objective
functions have been studied previously [10], but with dif-
ferent objectives. Finally, even though MKP has been
studied extensively for several decades, devising efficient
approximation algorithms for MKP is still a challenge.

Table 1: Average revenue achieved by different policies

Policy Metric Income Revenue Loss Net Income

Static
Mean 67030.44 399.01 66631.43
Std. 13573.32 172.45 13400.87

Dynamic
Mean 78026.33 3398.36 74627.97
Std. 15173.28 1083.63 14089.65

Cherkuri et. al. gave a polynomial time approximation
algorithm with approximation guarantee (1− ϵ) [7], but
the running time is prohibitive even for large ϵ. For ef-
ficient algorithms, linear programming based solutions
can achieve an approximation algorithm of e−1

e [8], but
it is not adaptive to dynamic conditions. The local search
algorithm described in [8] seems to be the most appropri-
ate solution for dynamic resource allocation.

8 Conclusion

We have presented a cloud management framework that
dynamically allocates data center resources to spot mar-
kets to maximize cloud provider’s total revenue. Specif-
ically, We designed efficient algorithms for scheduling
VM requests under both fixed pricing scheme and uni-
form pricing scheme. Our experiments confirm the ef-
fectiveness of our approach. In the future, we plan to
further improve our algorithms by considering the rev-
enue loss due to VM preemption and migration.

References
[1] Amazon ec2 spot instances. http://aws.amazon.com/ec2/spot-

instances/.

[2] Cloud exchange. http://www.cloudexchange.org/.

[3] Cloudsim. http://www.cloudbus.org/cloudsim/.

[4] AMIR DANAK, S. M. Resource allocation with supply adjust-
ment in distributed computing systems. In International Confer-
ence on Distributed Computing Systems (ICDCS) (2010).

[5] BRENT CHUN, ET. AL. Mirage: a microeconomic resource allo-
cation system for sensornet testbeds. In Proceedings of the 2nd
IEEE workshop on Embedded Networked Sensors (2005).

[6] C. WENG ET. AL. An economic-based resource management
framework in the grid context. In ACM/IEEE CCGrid (2008).

[7] CHEKURI, C., AND KHANNA, S. A ptas for the multiple knap-
sack problem. In ACM Symp. on Discrete Algorithms (2000).

[8] LISA FLEISCHER ET. AL. Tight approximation algorithms for
maximum general assignment problems. In ACM Symposium on
Discrete Algorithms (2006).

[9] NAVRAJ CHOHAN ET. AL. See spot run: Using spot instances for
mapreduce workflows. In USENIX HotCloud Workshop (2010).

[10] S. KAMESHARWAN ET. AL. Nonconvex piecewise linear knap-
sack problems. In Euro. Jnl. of Operational Research (2009).

[11] WILLIAM W. S. WEI. Time series analysis: univariate and mul-
tivariate methods. In Addison Wesley (1990).

[12] YI, S., KONDO, D., AND ANDRZEJAK, A. Reducing costs of
spot instances via checkpointing in the amazon elastic compute
cloud. In IEEE Int. Conf. on Cloud Computing (CLOUD) (2010).

6

