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Abstract—Intrusion Detection and/or Prevention Systems
(IDPSs) are now a crucial defensive measure to defend against at-
tacks intended to breach the security and operation of enterprise
information systems. The IDPS configuration can, however, have
a negative impact on network performance in terms of end-to-
end delay and packet loss. This paper proposes an analytical
queuing model based on the embedded Markov chain which
analyzes the performance of the IDPS and evaluates its impact
on performance. Through extensive simulations, we validate
the proposed model and the numerical equations that estimate
various performance metrics. Our results show that this model
can be leveraged to assess and set up an effective configuration
for the IDPS, achieving simultaneously the trade-off between
security enforcement levels on one side and network Quality of
Service (QoS) requirements on the other.

Index Terms—Security Performance Evaluation, Intrusion De-
tection and Prevention Systems, Markov Chain Modeling.

I. INTRODUCTION

In addition to other utilities, Intrusion Detection and/or
Prevention Systems are a vital defensive measure against a
range of malicious exploits [1], [2]. The necessity of defending
against a range of attacks is paramount for the use of any
security technology is. Avoiding unnecessary performance
degradation in a network when extensive security measures
are used is another important consideration. This necessitates
a combination of security at one end of the spectrum and
efficiency and speed at the other end, and this combination is
not generally well served by current IDPSs.

Intrusion Detection Systems (IDSs) examine packets sent
over networks and raise warnings when malicious content is
discovered. Intrusion Prevention Systems (IPSs), however, do
have the additional ability to defend against such attacks.
IDSs satisfy performance requirements, but their defensive
abilities are less than optimal. Somewhat mitigating this,
IPSs do protect networks through the rejection of packets
that correspond to known malicious patterns, but as attacks
increase, network performance can be affected. Combining the
best of both utilities, Intrusion Detection and/or Prevention
Systems (IDPSs) both detect malicious activity and block the
most harmful ones.

The design of an IDPS poses many challenges as to how
to identify attack signatures, how to improve the detection

engine and how to manage the system. A large body of work
has addressed these issues; however, little work has studied
the impact of deploying an IDPS on network performance
in terms of processing delay, throughput, and packet loss
[3], [4], [5], [6]. Ironically, while the IDPS can efficiently
detect and prevent many attacks that can compromise network
performance, it may itself cause the performance degradation.
For instance, the processing delay of the IDPS can increase
significantly as the size of the signature database grows. In
addition, the IDPS may not be able to cope with the increase in
the amounts of traffic, mainly because of the limited resources
in terms of CPU and memory (depending on whether the
IPDS is installed in a server or a stand-alone system). This
particular case leads to an increase in queue length, resulting
in higher waiting times for packets, and eventually many
losses. Thus, the IDPS becomes the network bottleneck, and
its configuration is no longer appropriate. To decrease queuing
delay, processing time and packet loss inside the IDPS, the
configuration should be adjusted such that the complexity of
the detection engine is reduced. In other words, we decrease
the attack coverage in order to provide better networking
performance. As a consequence, the operator faces a trade-
off between security enforcement levels on one hand and
Quality of Service (QoS) requirements on the other. Thus, it
is crucial to study the impact of different IDPS configurations
on network performance and select the one that achieves at
the same time security objectives and QoS requirements.

This paper aims to analyze the performance of the IDPS
for different configurations and under different traffic charac-
teristics. Different from existing works on IDPS performance
analysis, we develop an analytical model for the system based
on embedded Markov chain, which can allow the prediction
of the impact on network performance. We then leverage the
model to provide mathematical derivations of key performance
metrics: namely the throughput, queuing delay, system uti-
lization, and packet loss at the IDPS level. We define many
configurations for the IDPS that reflect security enforcement
levels and we study their effect on the network performance
metrics under different traffic intensities. The analytical model
is then validated through extensive simulations. In fact, our
model allows security administrators to strike a balance be-
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Fig. 1: Analysis Tasks for IDPS

tween security level and network performance.
The remainder of the paper is organized as follows. We

proceed with an overview of related work in Section II.
Section III presents our analytical model for the IDPS based
on a finite queuing system. In Section IV, we provide the
performance evaluation of the IDPS analysis model. Finally,
we draw our conclusions and follow up with potential future
work in Section V.

II. RELATED WORK

In the literature, a plethora of research has addressed
the trade-off between the security level and IDPS resource
consumption (i.e., CPU and memory) [7], [4], [8], [9]. Many
studies showed that the IDPS heavily relies on deep packet
inspection and is indeed a performance bottleneck [10], [11].
For instance, Dreger et al. study the trade-off between security
level and resource consumption [8], [9]. Lee et al. [12] put
forward a method to determine the performance of an IDPS
through quantifying the benefits and drawbacks of each detec-
tion rule. In order to reach the best possible configuration for
an overloaded IDS, they propose an algorithm with heuristics.
However, they do not rely on any analytical model, thus it
is hard to predict in advance the resulting performance for a
given configuration.

On the other hand, the impact of the IDPS on network
performance has received less attention. Setting the right
configuration parameters for the IDPS while avoiding the
drawbacks on the quality of service is still a challenging
problem. Hess et al. [13] try to mitigate the impact of IPS
services on the end-to-end delay. They propose an architecture
that allows the running of an overlay network of IPSs by means
of programmable routers. However, such a framework cannot
be easily deployed as it requires programmability which is not
a common feature in commercial off-the-shelf routers. Salah
et al. [7] derived an analytical queuing model based on the
embedded Markov chain in order to analyze the performance
of rule-based firewalls. This model can not be applied in
the context of IDPSs, however, because they have different
processing stages.

To the best of our knowledge, none of the existing work has
proposed queuing-based modelling for IDPS systems with two
stages, i.e., header and content analysis. This paper derives
an embedded Markov chain model, and thereby makes the
setting of the IDPS configuration possible analytically. The
security administrator is then able to select the appropriate
configuration that achieves the trade-off between security and
network performance.

Fig. 2: Tandem Queue Model with Blocking

Fig. 3: State Transition Diagram for Finite Queuing Model

III. ANALYTICAL MODEL

In this work, we consider an architecture similar to the one
adopted by Snort, the widely-used IDPS [14]. As shown in
Figure 1, the IDPS consists mainly of two stages, namely the
header analysis and the content analysis. The header analysis
stage examines packets for many types of malicious activity.
For instance, this first analysis can detect attacks that exploit
fragmentation vulnerabilities, such as the Ping of Death attack
where attackers use many small fragmented ICMP packets,
such that their assembling results in a huge packet that exceeds
the maximum allowable size for an IP datagram [14]. If a
particular packet is identified as belonging to such an attack,
there is no need to do any further analysis. Thus, the first stage
processing result allows the IDPS to decide to either release
the packet to the network without any further analysis or to
forward it to the content analysis for further checking. The
content analysis stage is usually a rule-checking engine that
uses a signature database to determine if the examined packet
belongs to any malicious traffic. Generally, this second stage
is more time-consuming than the first one (e.g., four times
higher as reported in [15]).

In the following, we present a finite queuing model for this
architecture and we use it to analyze the performance of the
IDPS.

A. Finite Queuing Model

In order to model the IDPS, we propose a two-stage
embedded Markov chain [16], [17], [18], [19] as shown in
Figure 2. The model consists of a FIFO queue and two servers.
The first and second servers correspond respectively to the
header analysis and content analysis stages.We assume that
packets arrive at the IDPS according to a Poisson process with
an arrival rate λ. We assume a fixed packet size in order to
simply the analysis. Packets join a finite queue of a maximum
size L − 1 (such as L ∈ N∗). Only one packet at a time
is passed to the header analysis stage that has an average
service time 1/µ. When the header analysis is completed,
the packet either leaves the system with an early decision
probability p or moves to the second stage, with a probability
(1 − p). The content header process has an average service



time 1/α. Service times for both stages are exponentially
distributed.Packets are considered lost only when the buffer
becomes full and, they cannot join the IDPS system. In order
to make the analytical solution feasible, we consider Poisson
arrivals, exponential services, and fixed packet sizes. This
applies only for certain types of traffic as reported in [20].
Considering other distributions and variable packet sizes is
part of our future work.

On the other hand, we assume that the header analysis stage
can not accept any new packet if the content analysis process is
already busy. Thus, the execution of the two stages is mutually
exclusive; i.e., if one of the stages is running, the other is idle.
This assumption is realistic for two reasons. The first reason
is that the CPU is usually executing one task at a time. The
second reason is that if we allow the pre-processor stage to
accept packets while the rule-checking stage is busy, we need
to introduce another queue at the second server. However, this
situation can result in out-of-order packets, as service times
of the two stages are different and some packets can directly
leave the system from the first stage. In practice, the service
time of packet header analysis is much lower than that of the
content checking (α < µ), since the underlying idea behind
the header analysis stage is to avoid detailed rule checking if
no anomaly is detected.

We represent the behavior of the multi-stage service queuing
system by a finite queuing model based on the embedded
Markov chain process with a state space S = {(n,m), 0 <
n ≤ L,m = {1, 2}}, where n denotes the number of packets
in the system and m denotes the stage which the IDPS is
performing. In particular, in the first stage (m = 1), the IDPS
is performing the packet processing task, and when m = 2,
the IDPS is performing the rule-checking process. The queuing
system has a buffer size of L − 1. State (0, 0) represents the
special case when the IDPS is idle.

From the state transition diagram depicted in Figure 3, we
can infer steady-state equations. Thus, for the initial states
(0,0), (1,1), and (1,2) we have:

0 = −λq0,0 + pµq1,1 + αq1,2 at state (0, 0)

0 = −(λ+ µ)q1,1 + λq0,0 + pµq2,1 + αq2,2 at state (1, 1)

0 = −(λ+ α)q1,2 + (1− p)µq1,1 at state (1, 2)

For intermediate states (n, 1) and (n, 2), where n ∈
[2, L− 1], we have:

0=−(λ+ µ)qn,1 +λqn-1,1+p µ qn+1,1+αqn+1,2 at state (n, 1)

0=−(λ+ α)qn,2+λqn-1,2+(1− p)µqn,1 at state (n, 2)

At the boundary states (L, 1) and (L, 2), steady-state equa-
tions are expressed as follows:

0 = −µqL,1 + λqL-1,1 at state (L, 1)

0 = −αqL,2 + λqL-1,2 + (1− p)µqL,1 at state (L, 2)

Based on these equations, we would like to express qn,1
and qn,2 in terms of q0,0 . It is straightforward to calculate the
probabilities of the initial and boundary states. Thus, from

state equations (0, 0) and (1, 2), the probabilities q1,1 and q1,2
can be expressed in terms of q0,0 as follows:

q1,1 =
(α+ λ)λ

(α+ p)µ
q0,0

q1,2 =
λ− pλ

α+ pλ
q0,0

In order to calculate the state probabilities qn,1 and qn,2 in
terms of q0,0 where n ∈ [1, L− 1], we define (wn,1)n∈[1,L−1]

and (wn,2)n∈[1,L−1] such as:



w0,1 = w0,2 = 1

w1,1 =
(α+λ)λ
(α+p)µ

w1,2 =
λ−pλ
α+pλ

wn,1 =
(α+λ)(λ+µ)
(pλ+α)µ wn-1,1 − (λ+α)

(λp+α)wn-2,1 2 ≤ n < L

− (λα)
(λp+α)µwn-1,2

wn,2 =
λ

λ+αwn-1,2 + (1−p)µ
λ+α wn,1 2 ≤ n < L

(1)

Using state equations (n, 1) and (n, 2) along with the defi-
nition of (wn,1)n∈[1,L−1] and (wn,2)n∈[1,L−1], we can express
qn,1 and qn,2 in terms of q0,0 as follows:

qn,1 = wn,1q0,0 (2)

qn,2 = wn,2q0,0

Furthermore, the probabilities at the boundaries are calcu-
lated in terms of q0,0 based on equations (L, 1), (L, 2) and (1)
as follows:

qL,1 =

{ (
λ
µ

)
wL-1,1q0,0 L > 1(

λ
µ

)
q0,0 L = 1

qL,2 =

{
λ
α (wL-1,2 + (1− p)wL-1,1)q0,0 L > 1( (1−p)λ

α

)
q0,0 L = 1

The next step is to determine q0,0 . To this purpose, we use
the normalization condition, which is expressed as follows:

q0,0 +

L∑
n=1

(qn,1 + qn,2) = 1 (3)

Using equation (2), we obtain:

q0,0 +
L∑

n=1

(wn,1 + wn,2)q0,0 = 1

⇒q0,0 =
1

1 +
∑L

n=1(wn,1 + wn,2)

(4)



Based on equations (1), (2) and (4), it is possible to
calculate the steady-state probabilities, and then we are able
to determine different performance metrics of the system at
the steady state. The next subsection discusses those metrics
and their equations.

B. Performance metrics

In this subsection, we identify the metrics that should be
measured at the IDPS system level, and have an impact on
the network performance. Particularly, end-to-end delay and
packet loss ratio can be directly affected respectively by the
average time spent in the IDPS per packet and the packet loss
ratio at the IDPS level. Furthermore, other important metrics
are also considered in our study such as the mean system
throughput, the average number of packets in the system, and
packet average waiting delay. In the following, we provide the
equation of each of those metrics in function of the steady-
state probabilities [17].

The average of the IDPS throughput γ is the average number
of packets (per second) leaving the IDPS system, either from
the first stage or the second one, and regardless of the decision
of the IDPS with respect to packets. It is expressed as follows:

γ = pµ
L∑

n=1

qn,1 + α
L∑

n=1

qn,2 (5)

The packet loss probability qlost is the probability of being in
the state (L, 1) or (L, 2). This means that the queue is full,
and as a consequence incoming packets will not be admitted.
It is given by:

qlost = qL,1 + qL,2 (6)

The average number of packets X̄ in the system can be
expressed as follows:

X̄ =
L∑

n=1

n(qn,1 + qn,2) (7)

The average time that a packet spends in the system Ws is
then expressed using X̄ and γ as:

Ws =
X̄

γ
(8)

The average service time of the two stages denoted Wa is
given by:

Wa =
1

µ
+

1− p

α

The average time spent by a packet in the queue Wq can
be measured as follows:

Wq = Ws −Wa (9)

Based on those equations, we compute the analytical values
of all the performance metrics. The next section is dedicated
to performance evaluation and comparison with simulations
results.

TABLE I: Security enforcement levels and their corresponding
processing time

Security Service time
level Stage one(1/µ) Stage two(1/α)
1 0.5µs 4µs
2 0.5µs 8µs
3 0.5µs 12µs
4 5µs 12µs

IV. PERFORMANCE EVALUATION AND RESULTS

This section has two objectives. First, we aim to validate
our analytical model through extensive simulations. Second,
we would like to analyze the effect of different security levels
on network performance. In the following, we describe the
settings of the different security enforcement levels, and then
analyze the effect of the packet arrival rates, the queue size
and the early decision probability p on the studied performance
metrics. For all experiments, we provide the results determined
from the analytical model and from simulations.

A. Settings

For the sake of our experiment, we defined four configura-
tions that reflect different levels of the detection capabilities of
the IDPS, and Table I illustrates the selected configuration for
each. While setting those values, we consider that the average
service time at stage 2 is an increasing function of the number
of selected rules. This is motivated by our previous work,
where we provide an analytical model that relates the service
time to the number of rules [6]. It was also in other works
using realistic data [21].

At the first three levels, we fixed the processing time at
the first stage. As the security level is increased, the IDPS
enlarges the selection of checking rules to improve the security
coverage, and therefore the server processing time at stage 2
increases. For instance, level 1 corresponds to the minimum
detection level where a small set of rules is checked at stage 2,
whereas levels 2 and 3 increase the size of the rules database
to provide better detection of malicious traffic. In addition,
security level 4 is a particular case where both stages have
to check a larger number of rules in order to increase the
protection capability of the IDPS especially at stage 1.

B. Results

We conducted several experiments in order to validate the
analytical results. We implemented discrete-event simulation
of a finite queueing for the system using Matlab [22]. Every
simulation goes through independent sub-runs with different
initial seeds (after having discarded the transient part), and it is
terminated when the confidence interval of 95% is constructed
[23].

In our first experiment, we evaluate the accuracy of the
proposed queuing model for a fixed queue size (L = 25), a
fixed early decision probability (p = 0.3) and for different
security enforcement levels. The results are depicted in Figure
4. Each figure shows a performance metric calculated, at
every arrival rate, based on the analytical model compared
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Fig. 4: Performance metrics versus packet arrival rate for different Security Enforcement Levels (L = 25, p = 0.3).

0 100 200 300 400 500
0

50

100

150

200

250

300

Packet Arrival Rate (Kpps)

T
hr

ou
gh

pu
t (

K
pp

s)

 

 

L=5
L=10
L=25
L=50
L=100
Simulation

(a) Throughput

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

Packet Arrival Rate (Kpps)

Pa
ck

et
 L

os
s 

R
at

io

 

 

L=5
L=10
L=25
L=50
L=100
Simulation

(b) Packet loss ratio

0 100 200 300 400 500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Packet Arrival Rate (Kpps)

A
ve

ra
ge

 D
el

ay
 in

 th
e 

Sy
st

em
 (

m
s)

 

 

L=5
L=10
L=25
L=50
L=100
Simulation

(c) Average time spent in the system per packet

Fig. 5: Performance metrics versus packet arrival rate for different queue size values (Security Level 1, p = 0.3).

with its corresponding value as computed by simulation. The
first observation is that the values obtained by simulations are
almost identical to the analytical ones (notice that in all fig-
ures, circles, which represent values obtained by simulations,
are overlapping with the points which represent the values
obtained using the analytical model).

On the other hand, the figures show the effect of the security
level on the performance metrics. As the security level is set
higher, we can observe that the throughput is decreasing (Fig.
4a) while the packet loss ratio (Fig. 4b) and the average time
spent in the system per packet (Fig. 4c) are getting higher.
This shows clearly that improving security coverage is at the
expense of performance. The degradation of performance is
due to the extra analysis carried by the IDPS in order to cover
more checking rules.

The second set of experiments was conducted to evaluate
the effect of the queue size (L). Therefore, we fixed other
parameters like the security level (set to 1) and probability
(set to 0.3). Figure 5 shows the different metrics. It shows
that although increasing the size of the queue can slightly
improve the throughput (Fig. 5a), the packet loss ratio does
not change so much when the traffic rate gets higher (Fig. 6b).
More importantly, a high queue size can cause a significant
delay per packet, as shown in Figure 5c. We can leverage
such results practically in order to configure the queue size

of an IDPS that uses security level 1 and a probability of
p = 0.3. As a practical example, assuming that to achieve
the QoS target, we require a certain performance at the IDPS
level, for example, a packet loss ratio of no more than 0.1, a
processing time that does not exceed 0.03 ms, and a throughput
higher than 225 Kpps. Knowing that the incoming traffic is
fluctuating between 200 and 300 Kpps, we can infer from the
figures 5a, 6b and 5c that setting the queue size to 10 packets
achieves the required QoS.

The final set of experiments investigates the effect of the
early decision probability (p) on the different performance
metrics (Fig. 6). From Figure 6a, it can be seen that for a
high packet arrival rate, a high value of p can increase the
IDPS throughput. This can be explained by the fact that the
header analysis is able to take the decision upon the receival
of the packet without the need for a content analysis process.
Thus, the throughput increases while the average packet delay
in the system is reduced. As a consequence, there are fewer
packets in the queue and the packet loss ratio is almost zero,
as shown in Fig. 6b. On the other hand, a small value of p can
result in more packets being directed to the second stage, and
thereby incurring a higher time spent in the system per packet.
In this case, there are more packets waiting in the queue and
the loss ratio can easily increase (Fig. 6b). These experiments
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Fig. 6: Performance metrics versus packet arrival rate for different early decision propability (Security Level 1, L = 25).

demonstrate that if the header analysis can efficiently take
a decision on the malicious traffic, and thereby avoiding the
second stage, it can significantly reduce packet loss as well as
the average time spent in the system. Furthermore, these results
can also help to choose the appropriate p value that can make
the IPDS satisfy QoS requirements. However, this depends on
whether the administrator can control the complexity and the
accuracy of the header analysis stage.

V. CONCLUSION

Although intrusion detection systems can shield the network
from various attacks and malicious traffic, they can have
drawbacks. That is, they can introduce significant delay and
packet loss due to their large processing stages and eventually
their inappropriate configuration. In this paper, we have tried
to address this particular problem by evaluating the impact of
such systems on the key performance metrics. To this end,
we modelled the IDPS as an analytical queuing model based
on embedded Markov chain. We also performed extensive
simulations that demonstrated the accuracy of the model. In
addition, we analyzed through the results the effect of the
different configuration parameters of the IDPS on network
performance. This study provides concrete examples of how
to tune those parameters in order to control the impact on
network performance. As such, this model not only allows the
analysis of various performance metrics at the IPDS level, but
it can be considered a valuable tool in setting up an appropriate
configuration able to strike a balance between a high security
enforcement level and network performance objectives.

Our future work is to leverage this model along with a
feedback control-theoretic approach to allow dynamic adjust-
ment of the IDPS configuration. Hence, it will be able to cope
with network traffic dynamics while achieving the security-
performance trade-off.
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