
αRoute: A Name Based Routing Scheme for
Information Centric Networks

Reaz Ahmed∗, Md. Faizul Bari∗, Shihabur Rahman Chowdhury∗, Md. Golam Rabbani∗,
Raouf Boutaba∗, and Bertrand Mathieu†

∗David R. Cheriton School of Computer Science, University of Waterloo

{mfbari | sr2chowdhury | m6rabban | r5ahmed | rboutaba}@uwaterloo.ca
†Orange Labs, Lannion, France

bertrand2.mathieu@orange-ftgroup.com

Abstract—One of the crucial building blocks for Information
Centric Networking (ICN) is a name based routing scheme that
can route directly on content names instead of IP addresses.
However, moving the address space from IP addresses to content
names brings scalability issues to a whole new level, due to two
reasons. First, name aggregation is not as trivial a task as the IP
address aggregation in BGP routing. Second, the number of ad-
dressable contents in the Internet is several orders of magnitude
higher than the number of IP addresses. With the current size
of the Internet, name based, anycast routing is very challenging
specially when routing efficiency is of prime importance. We
propose a novel name-based routing scheme (αRoute) for ICN
that offers efficient bandwidth usage, guaranteed content lookup
and scalable routing table size.

I. INTRODUCTION

Information Centric Networking (ICN) has recently received

significant attention in the research community. ICN philoso-

phy prioritizes a content (“what”) over its location (“where”).

To realize this separation of a content from its location, a name

based routing mechanism is essential. However, a number of

crucial issues and challenges related to name based routing are

yet to be addressed in order to successfully realize a content

oriented networking model for the future Internet.

Today’s Internet exists as an interconnection of thousands

of Autonomous Systems (ASs) from around the globe. The

biggest Internet routing table contains around 4 × 105 Bor-

der Gateway Protocol (BGP) [1] routes for covering about

3.8× 109 IPv4 addresses and 6× 108 hosts . This 104 scaling

factor between IPv4 addresses and BGP routes is achieved

by prefix based routing and route aggregation. However, the

number of addressable ICN contents is expected to be several

orders of magnitude higher. Google has indexed approximately

1012 URLs [2], which would impose 7 orders of magnitude

scalability requirement on a routing scheme similar to BGP.

The routing scalability issue in ICN is related to how

contents are named and how inter-AS and intra-AS routing

protocols process these names. Even if an inter-AS ICN

routing protocol like BGP covers only the top-level domains

as prefixes, it will need to carry approximately 2×108 unique

prefix routes [3], as no aggregation is possible at this level.

So, the crux of the problem lies in the fact that ICN requires

Internet routers to maintain a Brobdingnagian amount of

routing state, which does not seem to be possible with existing

technology. However, in reality the scalability requirement

will be much higher for the following reasons: (i) content

names are not as aggregatable as IP addresses, (ii) names with

same prefixes may not be advertised from nearby network

locations, (iii) routing cannot depend on topological prefix

binding as content retrieval should be location independent,

(iv) restricting the content name to some form of specialized

format limits the usability of the system, and finally, (v)

supporting content replication, caching, and mobility reduces

the degree of route aggregation that can be applied, as multiple

routes for the same content need to be maintained in the

routing table.

In this paper we address the routing scalability issue for

ICN. We propose a name-based overlay routing scheme named

αRoute, which is scalable and offers content lookup guarantee

(Section II). Both the routing table size and the number

of hops for content lookup in αRoute are logarithmically

bounded by network size. For Internet inter-domain routing

using αRoute, we propose a distributed overlay-to-underlay

mapping scheme that enables near shortest path routing in

underlay (AS-network) by preserving the adjacency relations

in the overlay graph (Section III). We also provide qualitative

comparison of our approach with existing approaches for ICN

routing in Section IV. Finally, we conclude and outline future

research directions in Section V.

II. αROUTE: A NAME-BASED DHT

A DHT essentially maps a key to a value in a distributed

manner. A DHT design involves two components: a) partition-
ing : segregating the entire key-space into subspaces and assign

each subspace to a physical node and b) routing: a mechanism

for locating any key in a bounded number of hops. Now, we

present these two components for αRoute.

A. Partitioning

Our partitioning policy has three desirable characteristics:

first, it places similar names in same partition, second, it

provides an upper-bound on the number of partitions and

third, it creates non-overlapping partitions. We treat strings as

unordered sets of characters; e.g., the string “www.rocket.com”

will be treated as { w, r, o, c, k, e, t, c, m }. Now we can

classify all the strings in the key space in separate partitions,

based on the presence or absence of characters in a string.

At first, we create some partitioning sets (Si) over the 36

978-1-4673-5946-7/13/$31.00 ©2013 IEEE

2013 Proceedings IEEE INFOCOM

90

341

2

5 6

7

Logical node

Indexing node

crrc cr cr

},{3 tkS =

}{2 eS =

},{1 crS =

e e e e e e e e

kt

tk

tk

tk

kt

tk

tk

tk

kt

tk

tk

tk

kt

tk

tk

tk

Fig. 1. An example partitioning tree

alphanumeric characters (lower case alphabet and digits) in

English based on the expected frequency of each character.

Then we create a logical partitioning tree by associating Si

with i-th level in the tree and by expanding each i-th level

node using the permutations of character-presence in each Si.

Leaf nodes in this tree represent the partitions.

This concept of partitioning is exemplified in Fig. 1, where

the tree has been grown upto height three. The first, second

and third level partitioning sets are S1 = {r, c}, S2 = {e} and

S3 = {k, t}, respectively. For level 1 we get four partitions rc,
rc̄, r̄c and r̄c̄ based on the characters in S1. In general, 2|Si|

branches will leave a node at level i. Here, |Si| denotes the

number of characters in Si. According to the tree in Fig. 1,

“www.rocket.com” will be assigned to the left-most leaf node

in the tree. In this partitioning strategy, tree height will grow

with network size and the maximum tree height is restricted

by the allowed character-set in the published names.

It is worth mentioning that the partitioning sets (Si) are

precomputed and influences the distribution of indexing load

across the network. To achieve proper load balancing, we need

to ensure that for any node the frequency of each combination

leading to its children is roughly equal. For example, in Fig 1

the joint frequencies of rc, rc̄, r̄c and r̄c̄ should be similar. To

fulfill this requirement the partitioning set is generated by a

three step process: (i) a corpus of content names are parsed to

compute character frequencies, (ii) all possible combinations

of characters upto a fixed length (4 in our experiments) are

generated, and (iii) the combination that produces the most

balanced branching is selected. For example, let us assume

that the tree is grown upto height 2 with the characters r, c,
and e. Now, when we want to extend the tree height, we first

compute the character frequency of the content names that are

partitioned under the 8 nodes at height 2. Then we generate

all possible character combinations (leaving out r, c, and e)

of length at most 4 and select the combination that produces

the most balanced branching at height 3, which is {k, t} in

the figure. The partitioning set can be precomputed given a

name corpus and the character distribution computed from a

large enough corpus is highly unlikely to change.

Non-English characters in a string may be treated in two

alternative ways. First, if we want to limit ourselves to the 36

alpha-numeric characters in English, then non-English char-

acters can be mapped to English characters using some pre-

defined rules. Alternatively, we can incorporate non-English

characters in the partitioning process, which may increase

routing overhead. It is worth noting that we can accommodate

around 64 billion nodes using the partitioning tree of 36 alpha-

numeric characters.

B. Routing

Our routing mechanism has two components: routing table

and message forwarding mechanism. Ideally the routing table

should be logarithmic on network size, while the forwarding

mechanism should ensure shortest path routing using local

information only. In this section we present an overlay routing

architecture which achieves both of these goals. In the next

section we will present a mapping algorithm to achieve these

goals in an underlay network as closely as possible.

Routing table: Each partition in the aforementioned parti-

tioning tree can be identified by a pattern s1s2 . . . sh where, si
is a character presence combination over the characters of Si

and h is the height of the partitioning tree. Each leaf node of

the aforementioned tree corresponds to an AS in the Internet.

For example if Si = {r, c} then si can be any of rc, rc̄, r̄c or

r̄c̄. We define a prefix of a pattern as a leftmost sub-pattern

of any length, e.g., s1s2 . . . st, where t ≤ h.

Now we describe the routing table entries for the AS respon-

sible for partition s1s2 . . . si . . . sh. For some level i, the AS’s

routing table will have 2|Si|−1 routing links corresponding to

the partitions s1s2 . . . ti . . . sh, where ti is a character presence

combination over the characters of Si and ti �= si. In general,

the routing table at each AS will have
∑h

i=1(2
|Si|−1) entries.

We can better describe the routing table entries with an

example. Consider the shaded AS in Fig. 1 with prefix r̄c −
ē − kt̄. This AS will have a total of 7(= (22 − 1) + (21 −
1)+ (22− 1)) routing links to ASs marked with numbers 1 to

7 in the figure. The first three routing links are computed by

taking the character presence combination over the characters

in S1 = {r, c}, which gives us rc − ē − kt̄, rc̄ − ē − kt̄
and r̄c̄ − ē − kt̄. Note that for the first and the third links,

the tree has not been fully expanded to level 3, so the links

will be pointing to nodes rc− ē and r̄c̄− ē, respectively. For

computing link 4, prefix characters corresponding to S1 and

S3 will remain unchanged, while the character(s) in S2 will

be complemented and so on. Slightly different situation can

arise if an AS has a shorter prefix than other ASs, e.g., the

AS with prefix rc− ē; its first routing entry would be rc̄− ē,

which is an internal(logical) node. Here any AS with prefix

rc̄− ē can be considered as the first link for rc− ē.

Message forwarding : We can define a simple message

forwarding mechanism based on the above described routing

table. A lookup string is converted to a set of characters

corresponding to the partitioning set, Si. The lookup request

will be forwarded to the AS responsible for the queried

characters in a multi-hop path. This path is obtained by

2013 Proceedings IEEE INFOCOM

91

gradually transforming the prefix of the current AS to the

lookup pattern. Following the previous example in Fig 1,

suppose the dark shaded node is looking for the AS responsible

for string “rectangle”, which is mapped to an AS with prefix

rc − e − k̄t. At the first step, node r̄c − ē − kt̄ will forward

the query to AS with the prefix rc − ē using routing link 1.

The 2nd routing link of rc − ē will have the prefix of any

AS, say rc− e− kt, under AS rc− e. Thus the query will be

forwarded to rc− e−kt, which will finally forward the query

to rc− e− k̄t.
It is worth noting that the partition tree, as in the example of

Fig. 1, does not exist in terms of network links because logical

nodes in the tree are not assigned to any physical entity in

the network. Rather, the tree exists logically at each indexing

ASs as prefix strings to the root. The overlay network is

composed of the routing links (dashed lines in Fig. 1) between

the indexing nodes.

C. Join protocol

To join the network a new AS, say X , has to know an

existing AS in the system, say M . X will query M for the

neighbor, say M1, with shortest prefix. Next, X will query

M1 for the neighbor with shortest prefix. In this way X will

crawl the network and find a local minima, i.e., a node with

shorter prefix than all of its neighbors. In case of a tie, X
will choose the node storing higher number of index records.

Once the local minima, say Y is found, X will request Y to

increase its prefix by one step. If prefix of Y is s1s2 . . . st and

Y has 2|St| siblings in level t then Y will increase its prefix to

s1s2 . . . st+1 and X will become a new sibling of Y , otherwise

X will become a sibling of Y at level t. Accordingly, X has

to populate its routing table using the routing information at

Y . It can be trivially proven that all the neighbors of X will

be within 2 hops from Y .

III. FROM OVERLAY TO UNDERLAY

In order to route using αRoute, we have to map the nodes in

the αRoute overlay graph to the AS topology. In this section

we first explain the impact of Internet topology on the mapping

process (Section III-A), then we present the mapping algorithm

(Section III-B) followed by the lookup (Section III-C) and

caching (Section III-D) mechanisms in the underlay network.

A. Topology Considerations for Mapping

The inter-domain AS network is based on the Border

Gateway Protocol (BGP), while each AS controls its intra-

domain routing protocol independently. Hence, it will be

inappropriate to use αRoute for both inter- and intra-domain

routing in the future information centric Internet. Instead,

following the current tradition, we assume that ASs will

collaborate using αRoute for inter-domain routing, while for

intra-domain routing an AS may extend its own αRoute prefix

or it may use a separate intra-domain routing protocol.

Node degree distribution at the overlay (αRoute) and un-

derlay (AS-topology) graphs has profound impact on the

mapping process. According to Fig. 1, each indexing node

e

Ti
er

-1
Ti

er
-2

Logical node

Indexing AS

rc
cr cr cr

t t t t t t

t

t

e e e e e e e e e
e e

k k k kkk k k

o o o o

Ti
er

-3

Fig. 2. Mapping a partitioning tree to AS-topology

of a uniformly grown partitioning tree should have similar

number of routing links. In other words, the overlay graph is

a nearly regular graph. On the contrary, it has been reported

in [4] that the node degree distribution in the AS-topology

exhibits a power law relationship with the number of ASs.

We exploit this dissimilarity in node degree distribution during

the mapping process. Recent studies [5] on Internet topology

Algorithm 1 PERFORMNEIGHBOURMAPPING(ξ, ρ)

Require: Neighbour set ξ, and own prefix ρ.

Ensure: Neighbours in ξ are mapped to an extension of ρ
1: Spatterns ← set of all unmapped patterns starting with ρ
2: while There are unmapped neighbours do
3: nbr ← neighbour with highest number of mapped

neighbours from ξ
4: nbr.pattern← select a pattern from Spatterns that

minimizes the hamming distance between nbr
and its neighbours

5: Remove nbr.pattern from Spatterns

6: Mark nbr as mapped

7: end while

revealed that a small number (around 12 to 16) of high-degree

ASs form an almost completely connected core. The rest of

the ASs have multiple physical links to the core, which results

into many triangles in the AS graph. It is also reported [6] that

the inter-connect graph between the non-core ASs is sparse.

For the mapping process, we treat the core ASs as Tier-1 AS,

while the ASs directly connected to at least one Tier-1 AS are

treated as Tier-2 ASs and so on. Hence, a Tier-2 AS, directly

connected to multiple Tier-1 ASs, can route a lookup request to

a core AS with an appropriate prefix, or it may use its peering

links with other Tier-2 or lower tier ASs. This process recurs

for the lower tier ASs as well.

Fig. 2 depicts a conceptual overview of αRoute prefix dis-

tribution over the ASs. To exploit the heterogeneous inter-AS

2013 Proceedings IEEE INFOCOM

92

connectivity, we assign short prefixes to the highly connected

top tier ASs. A lower tier AS, on the other hand, extends

a prefix of an upper tier AS. In contrast to the partitioning

tree introduced in Fig. 1, selected logical nodes (partitions)

at different levels are assigned to highly connected upper

tier ASs. In addition to having the regular αRoute links (as

presented by dashed arrows in Fig. 2), an upper tier AS will

have physical links to the lower tier ASs that extend its prefix.

B. Mapping Algorithm

The mapping procedure is initiated by a centralized entity

referred to as the Name Assignment Authority (NAA). The

NAA chooses a set of prefixes and assigns them to the Tier-1

ASs. The prefixes are selected in such a way that the expected

name resolution related processing load on each Tier-1 AS is

distributed proportionally to its capacity. In the next step, each

Tier-1 AS executes Algorithm 1 to assign prefixes to Tier-2

ASs. Each Tier-1 AS extends its own prefix to generate a set of

patterns Spatterns that are not yet mapped and starts with the

same pattern as its own, e.g., if a Tier-1 AS is assigned prefix

rc̄ then its Spatterns set contains all unmapped patterns starting

with rc̄. Next, the AS finds a neighbour (nbr) that has the

highest number of mapped neighbours. nbr is then assigned a

prefix in such a way that its distance (in the hamming space)

from all its neighbours is minimized and the process goes

on until all neighbours are mapped. After the Tier-1 ASs have

executed this mapping process, the already mapped Tier-2 ASs

map their neighbours using the same Algorithm. The process

goes on in a nested recursive manner until each AS is mapped

to a prefix.

In terms of mapping an edge in overlay graph (or logical

link) to the underlay network, this mapping strategy can

produce three scenarios : equal, compression and expansion. In

most of the cases, a logical link will be mapped to a physical

link, resulting into an equal or one-to-one mapping. Recall

that, if two logical nodes in the overlay space has more than

one mismatch (hamming distance) between their prefixes, it

results in a multi hop path between them in the overlay routing

space. Therefore, when two physical neighbors have more than

one mismatch in their assigned prefixes, a logical path between

them in the overlay space is mapped with the physical link

between them. In this case, traversing a physical link makes a

jump in the overlay space while routing. This will essentially

results into a compression of an overlay path into a physical

link. Finally for a few cases, adjacent overlay nodes will be

more than one hop away in the underlay, which will degrade

the mapping performance due to the expansion of a logical link

in αRoute graph to a physical path in underlay AS-topology. In

the experimental results section, we will provide quantitative

measures for these three cases.

C. Content lookup

To lookup a content, we first create a pattern depending

on the presence or absence of the letters in the given name

(or keywords) matching the partitioning strings (Sis). Then we

can use αRoute to route the lookup request to the AS indexing

the names matching this pattern. At the indexing AS, we will

find one or more index records of the form < Nl, Pl >, which

indicates that the content with name Nl is stored at AS with

pattern Pl. Now we use αRoute to reach the AS responsible

for pattern Pl.

Each AS has to maintain a routing table (as explained in

Section III-A) for routing messages to an AS responsible for

any given pattern. For each logical routing link Lk (corre-

sponding to the dashed lines in Fig 1 and Fig 2), the routing

table will contain an entry like < Lk, Ik, hk >. Here, Ik is

the inter-AS link that should be used for routing to the AS

responsible for pattern Lk and hk is the number of ASs to be

traversed for reaching Lk. With a good mapping algorithm, hk

will be 1 for most of the cases. In addition to the logical links,

an AS will keep separate routing entries like < Pk, Ik, 1 > for

each physical neighbor. Here, Pk is the pattern of the neighbor

AS reachable through the inter-AS link Ik.

Similar to BGP, αRoute supports policy-based routing.

αRoute can be augmented with different policies during the

route selection process. In the current implementation we

adhere to the following policy. If a lookup request can be

resolved using a peering link (usually free of cost) we route

using that link. Otherwise, the request has to be forwarded to

a provider AS, which usually incurs cost to the requesting AS.

D. Indexing and Caching

Strict index placement restriction is a major disadvantage

for any DHT approach. To enable efficient content lookup we

have to place a content’s index at a specific network location.

In addition, it introduces two step routing: first, route to an

index and then route to the content. We can mitigate both

of these problems (i.e., index placement freedom and two-

step lookup) by intelligently caching indexes and contents.

Moreover, such caching policies will reduce expensive inter-

AS traffic.

Index caching : ASs may not agree to store any content’s

index for several reasons, including legal implications and high

query traffic for a popular content. If the content is illegal or

access restricted then this behavior of an AS is appropriate.

But, for a popular content, such behavior can decrease the

content’s reachability. To minimize the volume of lookup

traffic for a popular content, each AS can cache the indexes

returned by outgoing lookup requests for resolving future

lookup requests. This index caching strategy will effectively

reduce the popular content lookup traffic at the rendezvous

indexing AS.

Content caching: As previously reported [7], [8], content

popularity in the Internet and hence lookup rate follows

power law distribution. We can use this property to improve

response time by caching popular contents at the AS storing

the content’s index. This will allow us to access a content in

one DHT lookup. However, we may face two barriers while

deploying this strategy. First, a content owner may not allow

the indexing AS to cache and serve its content due to financial

and legal reasons. Second, an AS may be overloaded if the

distribution of popular contents over the ASs is not uniform.

The second obstacle can be reduced if ASs cache a popular,

2013 Proceedings IEEE INFOCOM

93

permitted content and update content’s index by adding a link

to the cached copy. In the later strategy, a user can lookup the

indexing AS to find a list of ASs caching the desired content

and access the content from a nearby AS. This approach can

be effective while accessing large contents.

IV. RELATED WORK

The last few years have witnessed significant number of

research efforts in the field of ICN. Several of these research

works address content naming and routing as key research

challenges in ICN and have proposed different solutions for

these problems. A comprehensive survey on different nam-

ing and routing schemes proposed for ICN can be found

in [9]. DONA [10] provides a hierarchical name resolution

infrastructure including new network entities named Resolu-

tion Handlers (RH), which stores routing information of the

domain it is attached with. The root RH needs to maintain

routing information for all content in the network, which

severely confines the scalability of this mechanism. NetInf [11]

and LANES [12] both proposes a hierarchical DHT based

approach for ICN routing. However, the topmost level in the

DHT hierarchy in NetInf, called REX, needs to store index for

all the contents in the network, which results in a performance

bottleneck and a scalability issue. CCN [13], CBCB [14],

and TRIAD [15] use gossip based routing protocols, which

incur significant management and control overhead. CCN

proposes to replace IP address prefixes in BGP routing table

with content name prefixes and route content requests by

performing longest prefix matching in the routing table. On

the other hand, routing in CBCB [14] is based on controlled

flooding of attribute-value pairs.

V. CONCLUSION AND FUTURE WORK

In this paper we proposed a novel name based overlay rout-

ing scheme αRoute and an effective strategy for mapping the

overlay network to physical AS-topology. αRoute guarantees

content lookup while ensuring efficient bandwidth usage and

small routing table size. The proposed mapping strategy, on

the other hand, produces small expansion in routing path.

Compared to the existing routing techniques, our approach

has a number of advantages. First, routing can be done on

names without sacrificing efficiency or completeness. Second,

after finding the node responsible for a query name, it is

easy to find other names within 1 or 2 edit distance; since

the nodes responsible for storing those names will be 1 or 2

overlay hops away from the query target. Third, in contrast to

hierarchical routing mechanisms, there is no bottleneck node in

the proposed system. A capacity proportional load distribution

can be achieved by placing the ASs at different levels in the

partitioning tree based on capacity. Fourth, compared to other

tree-based routing approaches, we can conveniently select the

size of partitioning sets (|Si|), to tune the depth of the tree.

This will allow us to easily decrease routing hops by increasing

the number of routing-links, and vice versa. However, the

proposed partitioning algorithm for constructing Sis has a

shortcoming. We currently select Sis off-line in such a way

that the sample names are uniformly distributed over the leafs

of the tree. For a fairly large sample size, offline computation

should give nearly uniform distribution of names over the

resolution nodes. We intend to investigate other techniques

for online computation of Sis. In addition, the performance

of αRoute can be greatly improved by adopting the caching

strategies proposed in Section III-D. We intend to investigate

αRoute’s performance in presence of indexing and content

caching and experiment in a large scale testbed.

REFERENCES

[1] “BGP Routing Table Analysis Reports,” http://bgp.potaroo.net/.
[2] We Knew The Web Was Big. [Online]. Available: http://googleblog.

blogspot.com/2008/07/we-knew-webwas-big.html
[3] “Domain Counts & Internet Statistics,” http://www.domaintools.com/

internet-statistics.
[4] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law relation-

ships of the Internet topology,” SIGCOMM Comput. Commun. Rev.,
vol. 29, no. 4, pp. 251–262, Aug. 1999.

[5] M. Boguñá, F. Papadopoulos, and D. Krioukov, “Sustaining the internet
with hyperbolic mapping,” Nature Communications, vol. 1, p. 62, 2010.

[6] L. Subramanian, S. Agarwal, J. Rexford, and R. Katz, “Characterizing
the Internet hierarchy from multiple vantage points,” in IEEE INFO-
COM, vol. 2, 2002, pp. 618–627.

[7] S. A. Krashakov, A. B. Teslyuk, and L. N. Shchur, “On the universality
of rank distributions of website popularity,” Comput. Netw., vol. 50,
no. 11, pp. 1769–1780, Aug. 2006.

[8] O. Saleh and M. Hefeeda, “Modeling and Caching of Peer-to-Peer
Traffic,” in ICNP 2006, pp. 249 –258.

[9] M. F. Bari, S. R. Chowdhury, R. Ahmed, R. Boutaba, and B. Mathieu,
“A survey of naming and routing in information-centric networks,” IEEE
Communications Magazine, vol. 50, no. 12, pp. 44–53, 2012.

[10] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim,
S. Shenker, and I. Stoica, “A data-oriented (and beyond) network
architecture,” SIGCOMM Comput. Commun. Rev., vol. 37, pp. 181–192,
August 2007.

[11] C. Dannewitz, “NetInf: An Information-Centric Design for the Future
Internet,” in Proc. GI/ITG KuVS Workshop on The Future Internet 2009.

[12] K. Visala, D. Lagutin, and S. Tarkoma, “LANES: an inter-domain data-
oriented routing architecture,” in Proc ReArch 2009, pp. 55–60.

[13] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. Braynard, “Networking named content,” in CoNEXT, 2009.

[14] A. Carzaniga, M. J. Rutherford, and A. L. Wolf, “A Routing Scheme
for Content-Based Networking,” in INFOCOM 2004.

[15] D. Cheriton and M. Gritter, “TRIAD: a scalable deployable NAT-based
Internet architecture,” Technical Report, January 2000.

2013 Proceedings IEEE INFOCOM

94

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

