αRoute: A Name Based Routing Scheme for Information Centric Networks

Reaz Ahmed*, Md. Faizul Bari*, Shihabur R. Chowdhury*, Md. Golam Rabbani*, Raouf Boutaba*, and Bertrand Mathieu+

*David R. Cheriton School of Computer Science, University of Waterloo
+Orange Labs

Presented By: Shihabur R. Chowdhury

Outline

- Background
 - Information Centric Networks (ICN)
 - Challenges in ICN
- Contribution Summary
- $\triangleright \alpha Route DHT$
 - Partitioning
 - Routing
 - Mapping
 - Content Lookup
- Conclusion

Background

Information Centric Networking (ICN)

- Also known as "Content Centric or Content Based Networking", "Named Data Networking" etc.
- Contents are communication endpoints rather than hosts
- Host to content binding is transparent to the end users

Why ICN?

- Internet usage is becoming more "content oriented" rather than "host oriented"
 - More video streaming traffic than ssh traffic
- Efficient content distribution is through ad-hoc patches
 - ▶ CDN, P2P file sharing etc.
 - Little knowledge about the underlying network

Related Works

- TRIAD proposed to avoid DNS lookup and use object names to route to object sources [2000]
- DONA improved on TRIAD and proposed a secure and hierarchical name based routing architecture [2007]
- Named Data Networking project at PARC initiated to develop a protocol specification for ICN [2009]
- A number of projects are working on different ICN architectures
 - PSIRP, 4WARD, SAIL, COMET, PURSUIT, NetInf, CONVERGENCE

Challenges in ICN

Content Naming

How to uniquely and securely assign identifiers to contents?

Routing

- How to route content request based on content names?
- Routing Scalability
 - Routing table size
 - □ O(n) is very expensive, $n \sim 10^{12}$ (even more).
 - □ Content names are hard to aggregate
 - Network traffic
 - ☐ How to efficiently serve content requests?

Contribution Summary

- We address the routing scalability issue in ICN
- We propose $\alpha Route$, a name based Distributed Hash Table (DHT) to route based on content names
- αRoute provides
 - Logarithmic routing table size and content lookup hops
- We also propose an algorithm for mapping αRoute to a physical network

α Route DHT

- Three important issues in a DHT design
 - How to **partition** the name (or key) space among the DHT nodes?
 - How to **route** a get or put query between the DHT nodes?
 - ▶ How to **map** a logical DHT overlay topology to the underlying physical network?

αRoute: Partitioning

 $\{lord_of_the_rings.avi, book1.pdf, img_oo1.jpg, www.rocket.com....\}$

- We treat the names as unordered set of alphanumeric characters
 - \rightarrow book1.pdf => {b, o, k, 1, p, d, f}
- We build a partitioning tree
 - Each level takes partitioning decisions based on presence/absence of a subset of characters
- The final partitions are mutually exclusive

- ightharpoonup A subset of the alphabet, S_i is assigned at each level i
 - Example: Initially we have only one node and a partitioning set $S_1 = \{r,c\}$

$$S_1 = \{r, c\}$$

- There are $2^{|S_i|}$ possible character presence combination at each node at level *i*.
- Each character presence combination may form the edges to nodes in level i+1
 - The root has at most $2^2 = 4$ children.
 - We assign another partitioning set, $S_2 = \{e\}$ to level 2 nodes.

- Each node in level 2 has at most $2^1 = 2$ children
- For $S_3 = \{k, t\}$, each node in level 2 will have at most $2^2 = 4$ children
- And so on

- Leaf nodes are labeled with concatenation of all the labels on root to leaf path
- ▶ These concatenated labels represent a partition
- Labels of the leaf nodes are assigned to the DHT nodes

αRoute: Routing

αRoute: Routing (cont..)

- Each node has a set of logical neighbors
- Neighbor list of a leaf node is determined by taking all possible character presence combination of each sub-label from root to node path

αRoute: Routing (cont..)

If a leaf node corresponding to a pattern does not exist then select the leaf node having longest matched prefix with the pattern's representative string

$\alpha Route$: Routing (cont..)

αRoute: Mapping

- αRoute DHT nodes have almost equal number of logical neighbors.
 - i.e., overlay graph is regular
- Underlay graph is the Internet graph (AS level). It is reported to be power law distributed.
- Underlay graph nodes have tier ranking.
- Embedding a regular overlay graph on a power law distributed graph is hard.

αRoute: Mapping (cont..)

Mapping Algorithm

- Initiated by a central naming authority, similar to ICANN in current Internet naming.
- ▶ The partition tree, T is initially grown based on some corpus.
 - The partitioning sets at each level are selected based on character frequency in the corpus.
- ▶ The central authority assigns partitions to Tier-I ASs only.

αRoute: Mapping (cont..)

Logical node

Indexing node

- Initially the tree is grown to support the number of Tier-I ASs only
- Partitions are assigned to Tier-I ASs along with possible next levels of extensions.

αRoute: Mapping (cont..)

- Tier-I ASs extend their partition with additional levels in the tree
- ▶ The extended partitions are assigned to Tier-II AS.

aRoute: Mapping

Conflict Resolution

αRoute: Content Lookup

A node, n receives a content request

The content name is transformed to matching pattern, p

n looks up in routing table to find a pattern q that has longest prefix match with p

www.rocket.com

$$p = rcekt$$

Content is in r

Request is redirected to the content's actual location

n forwards p to a node m, responsible for pattern q. Forwarding continues until destination is found or

Conclusion

- Routing in the Internet based on content name is challenging due to the large volume of contents
- Proposed $\alpha Route$, a name based DHT that can route using content names
- αRoute provides guaranteed content lookup using logarithmic size routing table
- Also proposed a mapping algorithm that maps the DHT to physical network and assigns loads to network elements proportionally to their capacity.

Questions?

Backup Slide

