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Abstract—Data centers today consume tremendous amount of
energy in terms of power distribution and cooling. Dynamic
capacity provisioning is a promising approach for reducing
energy consumption by dynamically adjusting the number of
active machines to match resource demands. However, despite
extensive studies of the problem, existing solutions for dynamic
capacity provisioning have not fully considered the heterogeneity
of both workload and machine hardware found in production
environments. In particular, production data centers often com-
prise several generations of machines with different capacities,
capabilities and energy consumption characteristics. Meanwhile,
the workloads running in these data centers typically consist
of a wide variety of applications with different priorities, per-
formance objectives and resource requirements. Failure to con-
sider heterogenous characteristics will lead to both sub-optimal
energy-savings and long scheduling delays, due to incompatibility
between workload requirements and the resources offered by
the provisioned machines. To address this limitation, in this
paper we present HARMONY, a Heterogeneity-Aware Resource
Management System for dynamic capacity provisioning in cloud
computing environments. Specifically, we first use the K-means
clustering algorithm to divide the workload into distinct task
classes with similar characteristics in terms of resource and
performance requirements. Then we present a novel technique
for dynamically adjusting the number of machines of each type to
minimize total energy consumption and performance penalty in
terms of scheduling delay. Through simulations using real traces
from Google’s compute clusters, we found that our approach can
improve data center energy efficiency by up to 28% compared
to heterogeneity-oblivious solutions.

I. INTRODUCTION

Data centers have recently gained significant popularity
as a cost−effective platform for hosting large−scale service
applications. While large data centers enjoy economies of scale
by amortizing long−term capital investments over large number
of machines, they also incur tremendous energy costs in terms
of power distribution and cooling. In particular, it has been
reported that energy−related costs account for approximately
12% percent of overall data center expenditures [5]. For large
companies like Google, a 3% reduction in energy cost can
translate to over a million dollars in cost savings [16]. On
the other hand, governmental agencies continue to implement
standards and regulations to promote energy−efficient comput−
ing [2]. As a result, reducing energy consumption has become
a primary concern for today’s data center operators.

In recent years, there has been extensive research on improv−
ing data center energy efficiency [18], [22]. One promising
technique that has received significant attention is Dynamic

Capacity Provisioning (DCP). The goal of this technique is to
dynamically adjust the number of active machines in a data
center in order to reduce energy consumption while meeting
the Service Level Objectives (SLOs) of workloads. In the
context of workload scheduling in data centers, a metric of
particular importance is scheduling delay [21], [19], [15], [17],
which is the time a request has to wait before it is scheduled
on a machine. Task scheduling delay is a primary concern in
data center environments for several reasons: (1) A user may
need to immediately scale up an application to accommodate
a surge in demand and hence requires the resource request to
be satisfied as soon as possible. (2) Even for lower−priority
requests (e.g., background applications), long scheduling de−
lay can lead to starvation, which can significantly hurt the
performance of these applications. In practice, however, there
is often a trade−off between energy savings and scheduling
delay. Even though turning off a large number of machines
can achieve high energy savings, at the same time, it reduces
service capacity and hence leads to high scheduling delay.

However, despite the fact that a large number of DCP
schemes have been proposed in the literature in recent years,
a key challenge that often has been overlooked or considered
difficult to address is heterogeneity, which is prevalent in
production cloud data centers [17]. We summarize the types
of heterogeneity found in production environments as follows:

• Machine Heterogeneity. Production data centers often
comprise several types of machines from multiple genera−
tions [19]. They have heterogeneous processing capacities
and capabilities, different hardware features, processor
architecture, processor speed, memory and disk size. Con−
sequently, they also have different energy consumption
rates at run−time.

• Workload Heterogeneity. Production data centers typ−
ically receive vast number of heterogeneous resource
requests with diverse resource demand, durations, pri−
orities and performance objectives [21], [19], [15]. In
particular, it has been reported that the difference in
resource demand and duration can span several orders
of magnitude [21], [19], [6].

The heterogeneous nature of both machine and workload in
production cloud environments has profound implications on
the design of DCP schemes. In particular, given a surge of
workload requests, a heterogeneous−oblivious DCP scheme
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can turn on wrong types of machines which are not capable
of handling these requests (e.g., due to insufficient capacity),
resulting in both resource wastage and high scheduling delays.
However, designing a heterogeneity−aware DCP scheme is
known to be difficult. In particular, designing such a scheme
requires accurate characterization of both workload and ma−
chine heterogeneities. It also requires a heterogeneity−aware
performance model that strikes a balance between energy
savings and scheduling delay at run−time.

In this paper, we present HARMONY, a Heterogeneity−
Aware Resource MONitoring and management sYstem that
addresses the aforementioned challenges for DCP. Specifically,
we first present a characterization of the heterogeneity found in
one of Google’s production compute clusters. Using standard
K−means clustering, we show that the heterogeneous workload
can be divided into multiple distinct task classes with similar
characteristics in terms of resource and performance objec−
tives. We then formulate the DCP as an optimization problem
that considers machine and workload heterogeneity as well as
run−time electricity prices. We then devise an online control
algorithm based on the Model Predictive Control framework
that dynamically adjusts the number of servers in order to
minimize total energy cost and task scheduling delay, while
taking into account the switching costs of machines.

The remainder of the paper is organized as follows. Section
II surveys related work in the literature. Section III provides an
analysis of a publicly available workload traces from Google
to motivate our approach. Section IV provides an overview
of HARMONY. In Section V, VI and VII we describe the
design of HARMONY in details. Section VIII discusses the
deployment of HARMONY in practice. Finally, we evaluate
our proposed system using Google workload traces in Section
IX, and draw our conclusions in Section X.

II. RELATED WORK

In this section we provide a survey of existing studies on
(1) understanding workload and machine characteristics in
production clouds, and (2) dynamic capacity provisioning for
balancing the trade−off between energy savings and application
performance objectives.

A. Machine and workload characterization

Both capacity planning and task scheduling require a deep
analysis of the workload characteristics in terms of arrival rate,
requirements, and duration [15]. As a result, characterizing
workload in production clouds has received much attention
in recent years. For example, Mishra et. al. have analyzed
the workload of a Google compute cluster, and proposed
an approach to task classification using k−means clustering
[15]. Following the same line of research, Chen et. al. pro−
vided a characterization of Google cluster workload at job−
level applying the k−means algorithm [10]. Sharma et. al.
[19] and Zhang et. al. [21] studied the problem of finding
accurate workload characterizations through benchmark gen−
eration and validation. Recently, Reiss et. al. [17] provided a
comprehensive analysis of the heterogeneity and dynamicity
found in Google cluster traces. They have shown that both

machine configurations and workload composition are highly
heterogeneous and dynamic over time. They also pointed
out the importance of considering workload heterogeneity for
designing adaptive schedulers. However, the goal of these
studies was to understand the workload composition in pro−
duction clouds, rather than using workload characterization for
resource allocation and capacity provisioning.

B. Energy-aware capacity provisioning

There is a large body of literature on energy−aware dynamic
capacity provisioning in data centers. For example, pMapper
[20] is a migration−aware workload placement framework for
optimizing application performance and power consumption
in data centers. However, it does not consider the cost of
turning on and off machines. Similarly, Mistral [14] is a
framework that dynamically adjusts VM placement to find
a trade−off between power consumption, application perfor−
mance, and reconfiguration costs. However, it does not con−
sider the arrival rate of task requests in its formulation. More
recently, Ren et. al. [18] studied the problem of scheduling
heterogenous batch workload across geographically distributed
data centers. Different from out work, they assume workload
has already been divided into distinct types. Furthermore,
they do not consider schedulability issues, since for general
cloud workloads, not every task can be divided arbitrarily and
scheduled on any machine. To the best of our knowledge,
no previous work has applied task classification to dynamic
capacity provisioning problem in heterogenous data centers.
Thus, we design HARMONY as a workload−aware DCP
framework that can achieve both higher application perfor−
mance and efficiency in terms of energy savings.

III. WORKLOAD ANALYSIS

To understand the heterogeneity in production cloud data
centers, we have conducted an analysis of workload traces for
one of Google’s production compute clusters [3]1 consisting of
approximately 12, 000 machines. The workload traces contain
scheduling events as well as resource demand and usage
records for a total of 672, 003 jobs and 25, 462, 157 tasks over
a time span of 29 days. Specifically, a job is an application
that consists of one or more tasks. Each task is scheduled on
a single physical machine. When a job is submitted, the user
can specify the maximum allowed resource demand for each
task in terms of required CPU and memory size. The values of
the demand for each resource type were normalized between
0 and 1. Even though the dataset does not provide task size
for other resource types such as disk, it is straightforward to
extend our approach to consider additional resource types.

In addition to resource demand, the user can also specify
a scheduling class, a priority and placement constraints for
each task. The scheduling class captures the type of the
task. Its value ranges from 0 to 3, with 0 corresponding
to least latency−sensitive tasks (e.g., batch processing tasks)

1It should be mentioned that the same dataset has been analyzed by
Reiss et. al.[17]. However, our analysis extends, and largely complements
the results in [17].
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and 3, the most latency−sensitive tasks (e.g., web servers).
The scheduling class is used by every machine to determine
the local resource allocation policy that should be applied to
each task. The priority reflects the importance of each task.
There are 12 priorities that are divided into three priority
groups: gratis(0 − 1), other(2 − 8), production(9 − 11) [17].
In this paper, we primarily analyze task characteristics at the
priority group−level, because priority groups already provide a
coarse−grained classification of tasks. Furthermore, they also
have strong correlation with task scheduling classes [3], [17].
Nevertheless, our technical approach can be extended to handle
any combination of task priority groups and task scheduling
classes. Generally speaking, task priorities can be used for
specifying the Quality of Service (QoS) in terms of desired
task scheduling delay. During busy periods when demand
approaches cluster capacity, task priorities can ensure that high
priority tasks are scheduled earlier than low priority tasks,
resulting in lower scheduling delay.

A. Machine and Workload Dynamicity

In our analysis, we first plot the total demand for both
CPU and memory over time. The results are shown in Figure
1 and 2, respectively. The total demand at a given time is
determined by total resource requirement by all tasks in the
system, including the tasks that are waiting to be scheduled.
From both figures, it can be observed that the demand for each
resource type can fluctuate significantly over time. Figure 3
shows the number of machines available and used in the
cluster. Specifically, a machine is available if it can be turned
on to execute tasks, and is used if there is at least one task
running on it. Figure 3 also suggests that the capacity of the
cluster is not adjusted according to resource demand, as the
number of used machines is almost equal to the number of
available machines. These observations suggest that a large
number of machines can be turned off to save energy.

B. Analysis of Task Scheduling Delay

While turning off active machines can reduce total energy
consumption, turning off too many machines can also hurt
task performance in terms of scheduling delay. Figure 4
shows the Cumulative Distribution Function (CDF) of the
scheduling delay for tasks with respect to their priority groups.
It is apparent that tasks with production priority have better
scheduling delay than the gratis ones. Indeed, more than 50%
and 30% of the tasks in production and other priority groups
respectively are scheduled immediately. However, on the other
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hand, some of the tasks were delayed significantly. During
our analysis, we have also noticed that some tasks even with
production priority were delayed for up to 21 days. Since
the cluster is not constantly overloaded, the only possible
explanation is that the task is difficult to schedule due to
unrealistic resource requirement or there is a constraint that
is difficult to satisfy. These results suggests that more efficient
provisioning and scheduling methods are needed to reduce the
scheduling delay for these difficult−to−schedule tasks.

C. Understanding Machine Heterogeneity

The dataset also provides information about the types of
machines running in the cluster. A machine is characterized by
its capacity in terms of CPU, memory and disk size as well as a
platform ID, which identifies the micro−architecture (e.g., ven−
dor name and chipset version) and memory technology (e.g.,
DDR or DDR2) of the machine. Similar to tasks, machine
capacities are normalized such that the largest machine has
a capacity equal to 1. Figure 5 shows the different types of
machines and their characteristics (capacity and platform ID
(PFID)). We found 10 types of machines where more than 50%
and 30% of the machines belong to machine types 1 and 2,
respectively. On the other hand, machines types 3 and 4 have
around 1000 machines each. The remaining machine types
(5 to 10) constitute less than 100 machines. Unfortunately,
the traces do not provide detailed information about hardware
specifications, however, it is clear that such a heterogeneity
will translate into different energy consumption models.

D. Understanding Task Heterogeneity

In order to analyze the workload heterogeneity, we plotted
tasks requirements and their durations for the three priority
groups. Figure 7 shows the CPU and memory size of tasks
belonging to each priority group. The coordinates of each
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Fig. 7: Task Size Analysis Fig. 8: System architecture

point in these figures correspond to a combination of CPU and
memory requirements. Radius of each circle is logarithmic in
number of tasks within its proximity. It can be seen that most
of the tasks have low resource requirements. In particular,
we found that 43% of gratis tasks have the same CPU and
memory requirements equal to 0.0125 and 0.0159, respec−
tively. Furthermore, most of the large tasks are either CPU−
intensive or memory−intensive. There is usually no correlation
between CPU requirement and memory requirements. Another
key observation is that the difference in task size can span
several orders of magnitude. For example, Figure 7a shows
that the largest task in the gratis priority group is almost
1000× bigger than the smallest task in the same group for
both CPU and memory. Similar characteristics can also be
found in Figure 7b and 7c. Finally, by comparing Figure 5
and Figure 7, it is easy to see that not every task (e.g., CPU
size ≈ 1) can be scheduled on every type of machine (e.g.,
CPU capacity= 0.5).

Another important parameter that shows the heterogeneity
of the tasks is the task duration. Figure 6 shows the CDF of
task durations for tasks with different priority groups. From
Figure 6, it can be seen that production tasks (9−11) have
long durations that can reach 17 days, whereas 90% of the
remaining tasks (i.e., gratis and other) have shorter duration
that ranges between 0 and 10 hours. The same observation can
be done for production−priority tasks when compared to other
priority groups (Figure 6). Furthermore, it is worth noting that
more than 50% of the tasks are short (less than 100 seconds).
This concurs with the previous workload analysis studies [21],
which showed that tasks are either short or long.

E. Summary

The above analysis suggests that while the benefit of dy−
namic capacity provisioning is apparent for production data
center environments, designing an effective and dynamic task
scheduling and capacity provisioning scheme is challenging,
as it involves finding a satisfactory compromise between
energy savings and scheduling delay, given the heterogeneous
characteristics of both machines and workload. In particular,
we have found the heterogeneity in task size can span several
orders of magnitude, and not every type of machine can
schedule every task. Similar characteristics have also been
recently reported in Microsoft and Facebook data centers [6].

Thus, it is a critical issue to design heterogeneity−aware DCP
schemes for production data centers, as failing to consider
these heterogeneous characteristics will result in sub−optimal
performance for DCP.

IV. SYSTEM OVERVIEW

As discussed previously, we aim at designing HARMONY
as a DCP framework that considers both task and machine
heterogeneity. This requires (1) an accurate characterization
of both workload and machines, (2) effectively capture the
dynamic workload composition at run time, and (3) using the
captured information to control the number of machines in the
compute cluster to achieve a balance between energy savings
and scheduling delay. In practice, large cloud infrastructures
such as Google compute clusters execute millions of tasks
per day. Capturing heterogeneity at fine−grained (i.e., per−
task) level is not a viable option due to the high overhead
for monitoring and computation. Thus, a medium−grained
characterization of the workload is necessary. Motivated by
this observation, we present a workload characterization of
Google traces by dividing tasks into task classes using the
K−means algorithm. However, different from previous work
on this topic [15], [10] that focuses on only understanding
workload characteristics, our goal is to ensure high accuracy
of the characterization, while supporting efficient task classifi−
cation (e.g., labeling) at run time. It should be mentioned that
machines are naturally characterized (i.e., there are 10 types of
machines in the cluster). Thus, in our solution we will mainly
focus on task characterization.

Once we have obtained the workload characterization, we
introduce a monitoring mechanism that allows HARMONY to
capture the run−time workload composition in terms of arrival
rate for each task class. To make resource allocation decisions,
we then define a container as a logical allocation of resources
to a task that belongs to a task class. In our approach, the
task containers serve as reservations for helping the controller
to make machine allocation decisions. It is also possible to
directly use task containers for scheduling (to be described in
Section VII). Finally, a heterogeneity−aware DCP controller is
designed to adjust the number of active machines, based on
the current machine availability and workload composition.

The architecture of HARMONY is shown in Figure 8.
It consists of the following components. The task analysis
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module is responsible for monitoring the arrival of every
task class in order to identify the type to which it belongs.
The scheduler is responsible for assigning incoming tasks
to active machines in the cluster. The prediction module
receives statistics of the arrival rate for each task class,
and forecasts its future arrival rates. The container manager
evaluates the number of containers required to cope with the
current workload. These parameters are evaluated based on
two factors, namely, the predicted arrival rate and the required
SLO for each type of tasks expressed in terms of average
scheduling delay. The container manager periodically notifies
the capacity provisioning module about the number of required
containers of each type. The capacity provisioning module
decides which machine in particular should be switched on or
off. Obviously, the goal is to select the right combination of
machines that would be able to host the containers and, at the
same time, minimizes the energy consumption. The monitoring
module is responsible for collecting diverse statistics about
tasks and machines, including CPU and memory usage, free
resources and current task durations. It also reports any failures
and anomalies to the management framework. It should be
mentioned that currently we only focus on the cases where
disk storage of a VM is either handled by a storage network or
collocated with the VM itself. However, it is possible to extend
HARMONY to consider distributed file systems such as the
Google File System (GFS) [12]. In the following sections, we
describe the design of HARMONY in details.

V. TASK CHARACTERIZATION AND RUN−TIME

CLASSIFICATION

The goal of task classification is to divide the workload into
task classes that are accurate for DCP yet efficient for run−
time task labeling. For the purpose of resource provisioning,
it is necessary to consider task priority group, task size (CPU,
memory) as well as task running time as the features for
clustering. For run−time task labeling, we can observe the
task characteristics and assign it to the class that has the
highest similarity score. Following the common approach, the
similarity score between a task and a task class is computed
as the Euclidean distance between the task and the centroid
of the task class in the feature space.

Generally speaking, achieving a high accuracy in charac−
terization can be realized by properly controlling the number
of task classes. On the other hand, performing accurate run−
time task labeling is more difficult, because task running time
is generally unknown to the system until the task finishes. In
Harmony, we address this issue by realizing the fact that tasks
are either short or long, and the majority of the tasks are short
tasks. Thus, we can initially label all tasks as short tasks, and
gradually update the labels to the correct ones as time passes.
Since only a small fraction of tasks are long, the error caused
by the incorrect labeling is both small and short−lived.

To provide better support for this mechanism, we adopt a
two−step approach for workload clustering. In the first step,
tasks are classified based on static characteristics (e.g., priority,
CPU and memory size specified in the job request) using

k−means algorithm. In the second step, each task class is
further divided into sub−classes based on task running time.
The advantage of this approach is that it not only simplifies
the relabeling process, but also reduces the error introduced
by the relabeling process.

VI. WORKLOAD PREDICTION

As mentioned previously, the task analysis module is re−
sponsible for monitoring the arrival of tasks and determine
their types based on their size and current running time.
This also allows the task analysis module to predict the
future arrival rate of tasks. Currently, we have implemented
a time series−based predictor using the well−known ARIMA
[7] model. Once the predictions have been obtained, the next
step is to determine the number of machines of each type
needed in next control period. We address this problem by
computing the number of containers required to support the
workload for each task class. In HARMONY, this is performed
by the container manager. The container manager evaluats the
number of containers per type of tasks such that the desired
scheduling delay is achieved. Let ci denote the number of
containers for tasks type i such that the average scheduling
delay is equal to d̄i. We can model the queue of tasks of type
i and its corresponding N i

t containers at time t by M /G/N i
t

queue since a single container can process one task at a time.
Based on queuing theory, the average waiting time di for type
i tasks is given by [13]:

di ≈
πNi

t

1− ρi
·
1 + CV 2

i

2
·

1

N i
tμi

(1)

where μi is the execution rate of task type i, ρi =
λi

Ni

t
μi

is the

traffic intensity of tasks type i, CV 2
i is the squared coefficient

of variation of the average duration, and πNi

t

is the probability
that a task has to wait in the queue. It is expressed as:

πNi

t

=
(N i

tρ)
Ni

t

N i
t !(1− ρi)

⎡
⎣Ni

t
−1∑

k=0

(N i
tρi)

k

k!
+

(N i
tρi)

Ni

t

N i
t !(1− ρi)

⎤
⎦
−1

(2)

Given an average scheduling delay and using Eq. (1), it is
easy to estimate ci to ensure di ≤ d̄i and ρi < 1.

The number of containers computed using Eq. (2) provides
an estimation of the number of required containers to guar−
antee performance objectives. In the next section, we discuss
how to use this number for machine selection.

VII. CONTAINER−BASED SCHEDULING FOR DCP

In this section. We describe our solution called Container-
Based Scheduling (CBS), which aims at finding an allocation
of containers that can be used for run−time task scheduling.

A. Modeling Container Size

One of the main challenges for using containers for schedul−
ing is to select appropriate container size. On one hand, setting
the container size equal to the maximum value in the class
ensures every task can be scheduled without violating machine
capacity constraints. However, it also causes resource wastage
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TABLE I: Table of Notations

Symbol Meaning

di Average scheduling delay for task class i
R Resource types
sri Size of task i for resource type r
cri Size of a container of type i for resource type r
Cmr Capacity of a type m machine resource type r

Eidle,m Energy consumption of a type m machine when idle
αm̄r Energy efficiency ratio of a type m machine for type r

uir
t Util. of machine i for resource type r at time t

yit Boolean variable indicating machine i is active at time t

ui
t Change in machine i’s state at time t

aint Num. of type n containers assigned to machine i at time t

γin
t Change in num. of type n containers on machine i at time t

zmt Number of type m machines active at time t
δmt Change in the num. of type m machines at time t
xmn
t Num. of type n containers assigned to machine m at time t

σmn
t Change in num. of type n containers in type m machines at t

due to overestimation of true task resource demand in the
average case. In contrast, setting the container size equal to the
average task size will lead to under−estimation of task resource
assumption, resulting in machine capacity violations.

To deal with this issue, we rely on the statistical multi−
plexing of task resource demand to ensure the probability of
machine capacity violation to be low. Specifically, it is known
that k−means algorithm tries to model the input as a mixture
of Gaussian distributions with identity covariance matrix [4].
Thus, it is reasonable to assume tasks in each task class n

follow an independent gaussian distribution N (μD
n , σD

n ) for
each resource type r ∈ R, where R = {1, 2, ..., D} denotes
the set of resource types. The problem of selecting the optimal
container size can be stated as follows: For each task class
n ∈ N and resource type r ∈ R, for any machine m with
resource capacities Cmr∀r ∈ R and any group of tasks G

where each task i ∈ G has actual demand sir and container
size cir, find a value cnr such that if

∑
i c

ir ≤ Cmr ∀r ∈ R,
then Pr(

∑
i s

ir > Cmr∀r ∈ R) ≤ ε, where ε is the error
bound we wish to guarantee.

To solve this problem, we first translate ε into resource
specific error bounds εr for r ∈ R using the formula for
joint probability. Assuming all tasks in G are independent,
then the total task usage is also normally distributed, namely∑

i s
ir ∼ N (

∑
i μ

r
i ,
∑

i(σ
ir)2), ∀r ∈ R. Define Zr

ε as the
(1− εr)−percentile of the unit normal distribution, our goal is
to ensure

Cmr −
∑

i∈G μr
i√∑

i∈G(σ
r
i )

2
≥ Zr

ε (3)

holds for all r ∈ R. In this case, we set cir = μir + Zr
ε σ

ir,
which satisfies the above inequality. Then, we can reserve extra
machines to handle machine capacity violation by scheduling
the tasks causing the violation in the reserved machines.
Finally, even though we assume task size follows Gaussian
distribution, the results for other clustering methods and more
general distributions (i.e., non−Gaussian) can be derived sim−
ilarly using concentration bounds [11].

B. CBS Formulation

We now provide a formal model for CBS. In our model,
time is divided into intervals of equal duration, and control
decision is made at the beginning of each time interval. The
cluster consists of M types of machines, each m ∈ M has
Nm

t machines available at time t (i.e., the t’th time interval).
Denote by Cmr ∈ R

+ the capacity of a single machine of
type m ∈ M for resource type r ∈ R. Similarly, there are
N types of containers to schedule at time t, the number of
containers of type n ∈ N is Nn

t . Let cnr ∈ R
+ denote the

size of a type n ∈ N container for resource type r ∈ R.
Let yit ∈ {0, 1} denote whether machine i is active at time

t. Furthermore, define ui
t ∈ {−1, 0, 1} as an integer variable

that indicates whether the machine is turned on (ui
t = 1) or

off (ui
t = −1), or unchanged (ui

t = 0). We also define aint ∈
N∪{0} as an integer variable that indicates the number of type
n containers on machine i at time t, and γin

t as the change in
zint at time t. We thus have the following state equations:

yit+1 = yit + ui
t (4)

aint+1 = aint + γin
t (5)

The utilization of machine i for type r resource at time t is

uir
t =

1

Cmr

∑
n∈N

zint cnr. (6)

As total energy usage of a physical machine can be estimated
by a linear function of resource utilization [22], let pt denote
the energy price at time t, the energy cost at time t is:

Et = pt
∑
m∈M

∑
i∈Nm

t

yit

(
Eidle,m +

∑
r∈R

αmruir
t

)
(7)

where Eidle,m ∈ R
+ is the energy consumption of a

type m machine when it is idle, and αnr ∈ R
+ is

the slope of the linear energy consumption function. We
can define Eidle

t = pt
∑

m∈M

∑
i∈Nm

t

yitE
idle,m, Eutil

t =

pt
∑

m∈M

∑
i∈Nm

t

∑
r∈R αmruir

t and rewrite Et as Et =

Eidle
t + Eutil

t . Next, to model the scheduling performance,
since it is not possible for all containers to be scheduled
when demand is high, we assume there is a utility function
fn(·) that models the monetary gain for scheduling containers.
fn(·) is assumed to be a concave function that can be derived
from SLO objectives (e.g., reduction in monetary cost due to
scheduling delay). The total revenue becomes:

U
perf
t =

∑
n∈N

fn(
∑
m∈M

∑
i∈Nm

t

aint ) (8)

The cost for turning machines on and off can be described by:

Csw
t =

∑
m∈M

∑
i∈Nm

t

qm|ui
t| (9)

where qm ∈ R
+ denotes the switching cost of a single type

m machine. Finally, we require the following constraints:

yit ≥ aint ∀m ∈M, i ∈ Nm
t , n ∈ N, t ∈ T (10)∑

n∈N

anit cnr ≤ Cmr ∀m ∈M, i ∈ Nm
t , t ∈ T (11)

223515515



Constraint (10) states that a machine is active if it hosts at
least one container. Constraint (11) ensures that containers
scheduled on the same machine do not exceed the resource
capacity of the machine. Thus, the overall objective of CBS
is control the number of active machines and adjust container
placement in a way that minimizes the energy consumption,
while minimizing the number of machines to be switched on
and off over a time horizon T = {1, 2, ..., T}:

max
ain

t
,ui

i
,yi

t
,ain

t

RT =
∑T

t=1
U

pref
t − Et − Csw

t

subjects to constraints (4), (5), (10) and (11). CBS is NP−
hard to solve as it generalizes the vector bin−packing problem
[9]. Furthermore, linear programming based solutions cannot
be applied to CBS due to the large number of variables
involved. Given 80 task classes and over 10K machines, CBS

contains at least 800K variables, making it difficult to solve
in online settings. Finally, traditional bin−packing heuristics
(e.g., First−Fit) do not apply directly to CBS as they do not
consider machine switching and container reassignment costs.

C. Solution Algorithm

To address the above limitation, we first describe a relaxed
version of CBS, where the number of machines (i.e., yit) and
container assignment (i.e., zint ) no longer take integer values.
This relaxation yields a simpler formulation, as we only need
to maintain the container counts at an aggregate level (i.e., per−
machine type) rather than at per−machine level. This addresses
the scalability issue associated with CBS. Specifically, denote
by zmt ∈ R

+ the number of active type m machines at time
t, and δmt ∈ R the change in the number of machines at
time t. Similarly, define xmn

t ∈ R
+ as the number of type n

containers assigned to machines of type m that is capable of
hosting container type n, and σmn

t ∈ R
+ the change in xmn

t

at time t, we have the following equations:

zmt+1 = zmt + δmt (12)

xmn
t+1 = xmn

t + σmn
t (13)

It is straightforward to show the relaxed version of CBS can be
rewritten as the following problem called CBS −RELAX:

max
δm
t
,σmn

t

T∑
t=0

∑
m∈M

−pt

(
zmt Eidle,m +

∑
r∈R

∑
n∈N

αmrcnr

cmr
· xmn

t

)

+
∑
n∈N

fn(
∑
m∈M

xmn
t )−

T−1∑
t=0

∑
m∈M

qm|δ
m
t | (14)

subject to zmt ≤ Nm
t ∀m ∈M, t ∈ T (15)∑

n∈N

crnx
mn
t ≤ zmt Cmr ∀m ∈M, r ∈ R, t ∈ T (16)

xmn
t , zmt ∈ R

+ ∀n ∈ N,m ∈M, t ∈ T

along with constraints (12) and (13). This problem is a
convex optimization problem that can be solved using standard
methods [8]. Before introducing the control algorithm, We
provide some properties of CBS:

Lemma 1. Given a fractional solution of CBS − RELAX

with zm∗t type m machines and xmn∗

t type n containers, a

greedy first-fit algorithm can place
⌊
xmn

t

2|R|

⌋
of each type of

container n in zm∗t + 1 machines.

Proof: We rely on the property that the First−Fit (FF )
algorithm produces a solution in which at most one machine
i is less than “half−full” (i.e., utilization uir

t ≤
1

2
∀r ∈ R). To

see this, suppose this statement is false, i.e., there are two non−
empty i, j ∈ Nm

t that are less than “half−full” and i is filled
before j. In this case, when FF tries to pack a container that
belongs to j in the solution, it would pack it in i instead. As a
result, machine j should hold no containers, which contradicts
our assumption. Therefore, given a machine i with utilization
uir
t for resource type r ∈ R, define the effective utilization

of i as 1

|R|

∑
r∈R uir

t . Based on this “half−full” property, FF

ensures every machine has effective utilization at least 1

2|R|
except the last non−empty machine.

Given xmn∗

t type n containers for each n ∈ N that can
be scheduled on zm∗t type m machines, the sum of the total
effective utilization must be less than zm∗t as it is the maximum
possible utilization for zm∗t machines. Now, suppose we scale

down the number of type n containers to
⌊
xmn∗

t

2|R|

⌋
for each

n ∈ N , the total utilization of machines is thus at most zm∗

t

2|R| .
Suppose there are still containers waiting to be scheduled after
using zm∗t + 1 machines. As FF ensures every machine has
effective utilization at least 1

2|R| except the last one, the total

utilization of the zm∗t + 1 machines is at least zm
∗

t

2|R| , which

contradicts the fact that the total utilization is at most zm
∗

t

2|R| .
Lemma 1 provides a simple algorithm for rounding the

fractional solution of CBS−RELAX to an integer one using
FF , such that at least

⌊
xmn

t

2|R|

⌋
containers of type n ∈ N are

scheduled on zm∗t +1 machines for each m ∈M and n ∈ N .
Algorithm 1 summarizes our controller algorithm. When the
control interval t starts, the controller uses the predicted values
Nn

t+i|t∀n ∈ N, 1 ≤ i ≤ W 2 to solve CBS − RELAX ,
which gives zm∗t|t , the number of active type m machines to
be made available at time t. Then the controller computes
an integer solution by first reducing the number of type n

containers to at most
⌊
xmn

t

2|R|

⌋
and then add containers using FF

to ensure the number of type n containers is at least
⌊
xmn∗

t

2|R|

⌋
for all n ∈ N . Container reassignment (i.e., migration) is
then performed to ensure there are at most zm∗t|t +1 machines
to be active. In our formulation, container reassignment cost
is modeled as part of the machine switching cost, as it is
only used to allow machines to be turned off. The average
switching cost can be obtained through experiments. Once the
container reassignment is completed and there is still room for
more containers, the controller is free to schedule additional
containers as long as the total number of containers for each
n ∈ N is at most xmn

t . Finally, the controller will realize the

2We use (t+ i|t) to denote future value for time t+ i either predicted or
computed at time t
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Algorithm 1 Controller Algorithm for CBS

1: Provide initial state zm0 , xmn
0 , t← 0

2: loop
3: At beginning of control period t:
4: Predict Nn

t+i|t, pt+i|t for horizons t = 1, · · · ,W using a
demand prediction model

5: Solve CBP − RELAX to obtain δmt+i|t,σ
mn
t+i|t for i =

0, · · · ,W − 1

6: Sort new containers based on their utilities
7: for m ∈M do
8: Select zmt|t machines of type m as active machines
9: end for

10: Compute a re−packing configuration for all selected active
machines

11: Turn on selected machines, perform re−parking, turn off other
machines

12: t← t+ 1

13: end loop

new configuration by actually turning off unused machines and
making container allocations.

Theorem 1. The integer solution produced by Algorithm 1
ensures Upref

t −Et−Csw
t ≥ ( 1

2|R| − ε)Upref∗
t − (1+ ε)(E∗t −

Csw∗
t ) when zmt is sufficiently large for all m ∈M , t ∈ T .

Proof: Since the number of machines used is determined
by CBS − RELAX , it is clear that the Csw

t = Csw∗
t and

Eidle
t = Eidle∗

t . As the number of type n containers scheduled
on type m machines is upper−bounded by xmn∗

t , we have
Eutil

t ≤ Eutil∗
t . Finally, by Lemma 1, it is easy to show

that
⌊
xmn∗

t

2|R| ·
zm∗

t
−1

zm∗

t

⌋
containers of each type n ∈ N can be

packed in zm∗t machines. As f(·) is convex function, it must
hold that Upref

t ≥ (maxm{
zm∗

t
−1

zm∗

t

}− ε′) · 1

2|R|U
pref∗
t ·, where

ε′ = maxm{
xmn∗

t

2|R| ·
zm

t
−1

zm

t

−
⌊
xmn∗

t

2|R| ·
zm

t
−1

zm

t

⌋
} is the rounding

error. The theorem is proven by defining ε = maxm{
1

zm

t

}+ ε′

and summing the above equations.
Theorem 1 provides a bound on the worst case performance

of CBS. In experiments, we have observed Algorithm 1
typically performs much better than the worst case bound.
Furthermore, there are heuristics for finding better trade−offs
between performance objectives U

pref
t and resource costs

(Et + Csw
t ). In particular, realizing the bin−packing solutions

often cannot fully utilize the machine capacities, we can define
an over-provisioning factor ωn ∈ R

+ for container type n

to account for the bin−packing inefficiencies. ωn essentially
captures how much extra resource is required to fully pack a
given set of type n containers. To account for ωm, it suffices
to replace constraint (16) by the following constraint:∑

n∈N

ωncrnx
mn
t ≤ zmt Cmr ∀m ∈M, r ∈ R, t ∈ T (17)

and run Algorithm 1 to find a suitable container placement.
Finding a suitable value for ωn can be done through various
methods, such as uniformly sampling the range [1, 2|R|] and
selecting the one that produces the best solution among the
sampled values for ωn. However, using ωn does not lead

TABLE II: Machine Configurations

Model Num. Num. Memory Num.
of Processors of Cores Memory of Machines

Dell PowerEdge R210 1 4 4 GB 7000
Dell PowerEdge R515 2 6 32 GB 1500

HP DL385 G7 2 12 16 GB 1000
HP DL585 G7 4 12 64 GB 500

to a better performance guarantee. To see this, consider an
example where Nm

t of type m machines that are selected by
CBS−RELAX to be active. All other machines are inactive
and have Eidle

≈ ∞. In this case, no matter how we adjust
the value of ωn, the number of containers scheduled of the
algorithm will not improve.

VIII. DISCUSSION

In this section we discuss considerations related to the
deployment of HARMONY in practice.

A. Task Classification

It is should be mentioned that many public cloud providers
today (e.g. Amazon EC2 [1]) already offer VMs in distinct
types. In such a case, our DCP algorithms can be applied
directly to these public clouds. However, we argue that pre−
defined VM sizes may not match the actual need of each
customer in all cases. This is reflected by the fact that workload
heterogeneity is prevalent in private clouds such as Google’s
compute clusters, where customers are given the flexibility to
choose desired VM size. In these cases, our approach is more
flexible and can provide highly efficient solution for DCP for
arbitrary workload compositions.

B. Scheduler Design

Although CBS provides a theoretically−sound solution for
DCP, it requires the scheduler to adopt a container−based
scheduling algorithm, which is not always available in prac−
tice. As many production cloud systems (e.g., Google’s com−
pute cluster) have also developed sophisticated scheduler algo−
rithms, implementing CBS requires major change to the sched−
uler design. To address this issue, in this section we propose
a simple solution called Contained-Based Provisioning (CBP)
that works with existing scheduling algorithms. Specifically,
we solve CBS − RELAX to compute the machines to be
provisioned at run−time, and round the fractional values of
δmt and σmn

t to their nearest integer values as the number of
machines available to the scheduler. At run−time, the scheduler
can retain its current scheduling algorithm (e.g., first fit) as
long as it ensures the number of type n tasks assigned to type
m machines is less than xmn

t . The main benefit of CBP is its
simplicity and practicality for deployment in existing systems.
However, due to lack of control of the scheduler, CBP does
not provide performance guarantee in terms of task scheduling
delay. As a solution that can be readily deployed in practice,
we also evaluate the performance of CBP in our experiments.
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Fig. 9: Machine Energy con−
sumption Rate
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Fig. 10: Number of Tasks
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Fig. 11: Number of Tasks
(Other)
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Fig. 12: Number of Tasks
(Production)
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Fig. 13: Class size (Gratis)
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Fig. 14: Task duration (Gratis)

1 2 3 4 5 6 7 8 9 10 11 12
0

0.2

0.4

0.6

0.8

Class ID 

N
or

m
al

iz
ed

 v
al

ue

 

 

CPU demand
Memory demand

Fig. 15: Class size (Other)
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Fig. 16: Task duration (Other)
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Fig. 17: Class size (Produc−
tion)
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Fig. 18: Task duration (Pro−
duction)

IX. SIMULATION STUDIES

We simulate a heterogeneous cluster composed of a mixture
of servers from multiple manufacturers and models. Table
II provides the characteristics of the simulated servers. We
normalized the CPU core count and memory capacity to the
largest machine size. Hence, HP DLG585 G7 has a capacity
1 CPU unit and 1 memory unit, which corresponds to 48 cores
and 64 GB, respectively. We used Equation 7 to model the
energy consumption of the different machines. The parameters
Eidle,m and αmr for each type of servers were estimated
using energy measurements available in [2]. Figure 9 shows
the energy consumption as function of CPU usage. Indeed, this
figure demonstrates the importance of considering the machine
heterogeneity when scheduling tasks/containers in order to
reduce energy consumption. For instance, a container requiring
0.2 CPU unit should be placed in a HP DL385 G7 since
the PowerEdge R210 does not have enough CPU capacity,

whereas the other types of servers are able to host it but will
consume much more energy. Selecting the “right” machines
to switch on becomes even more challenging when millions
of heterogeneous tasks have to be scheduled in the cluster.

A. Results for Task Classification

We performed task classification as described in Section V.
For each priority group, we varied the value of k and evaluated
the quality of the resulting clusters produced by the K−means
algorithm. The best value of k for each priority group is
selected as the one for which no significant benefit can be
achieved by increasing the value of k. The results after the
first step of our characterization for each priority group are
shown in Figure 13, 15, and 17, respectively. It is evident that
the clustering algorithm captures the differences in task sizes
and identifies cpu−intensive tasks and memory−intensive tasks.
Furthermore, the standard deviation is much less than the mean
value for both CPU and memory, confirming the accuracy of
the characterization. The number of tasks in each task class
is shown in Figure 10, 11 and 12, respectively. It is clear that
the number of tasks within each cluster can vary significantly.
Most of the classes have between 104 and 106 tasks except
cluster 4 for Gratis priority group, which has only 100 tasks.
Lastly, we run the k−means algorithm with k = 2 to categorize
tasks of each task class as either short or long. The results are
shown in Figure 14, 16 and 18, respectively.

B. Controller Performance

We have evaluated the performance of CBS and CBP
algorithms using Google workload traces. For comparison
purpose, we have also implemented a baseline (heterogeneity−
oblivious) algorithm that finds the best trade−off between
energy savings and scheduling delay by maintaining an 80%
utilization of the bottleneck resource. It provisions machines in
a “greedy” fashion by turning them on in decreasing order of
energy efficiency. As the Google workload contains many long
running tasks that were scheduled before the start of the traces,
in our current simulation, we mainly focus on simulating
the arrival of new tasks. The sum of arrival rate of tasks
belonging to each priority group is shown in Figure 19. Figure
20 shows the sum of the total containers belonging to each
priority group computed by HARMONY. The number of active
servers provisioned by the baseline algorithm and CBS/CBP
are shown in Figure 21 and Figure 22, respectively. Note that
CBS and CBP provision the same number of machines as
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Fig. 19: Aggregated Task Ar−
rival Rates
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Fig. 20: Number of required
containers
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Fig. 21: Number of machines
used by the baseline
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Fig. 22: Number of machines
used by CBS and CBP
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Fig. 23: CDF of scheduling
delay for baseline
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Fig. 24: CDF of scheduling
delay for CBS
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Fig. 25: CDF of scheduling
delay for CBP
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Fig. 26: Comparison of Energy
Consumption

indicated by the MPC algorithm. The CDF of task scheduling
delays are shown in Figure 23, 24 and 25, respectively. It can
be seen that CBS can substantially reduce the scheduling delay
compared to the baseline algorithm. On the other hand, CBP
is able to outperform the baseline algorithm, but generally
performs worse than CBS due to lack of coordination with
the scheduling algorithm. An intuitive explanation is that the
baseline algorithm was unable to take advantage of heteroge−
nous machines CPU and memory capacities for scheduling,
resulting in inefficient schedules and long scheduling delay
for large tasks. Finally, Figure 26 shows the total energy
consumption of all three approaches. It can be seen that
CBS incurs the lowest energy costs, corresponding to a 28%
reduction in energy cost compared to the baseline algorithm.

X. CONCLUSION

Dynamic capacity provisioning has become a promising
solution for reducing energy consumption in data centers
in recent years. However, existing work on this topic has
not addressed a key challenge, which is the heterogeneity
of both workloads and physical machines. In this paper, we
first provide a characterization of both workload and machine
heterogeneity found in one of Google’s production compute
clusters. Then we present HARMONY, a heterogeneity−aware
framework that dynamically adjusts the number of machines to
strike a balance between energy savings and scheduling delay,
while considering the reconfiguration cost. Through experi−
ments using Google workload traces, we found HARMONY
can lead to up to 28 % energy savings while significantly
improving task scheduling delay.
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