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Abstract—Cloud computing promises to provide computing
resources to a large number of service applications in an on-
demand manner. Traditionally, cloud providers such as Amazon
only provide guaranteed allocation for compute and storage
resources, and fail to support bandwidth requirements and
performance isolation among these applications. To address this
limitation, recently, a number of proposals advocate providing
both guaranteed server and network resources in the form
of Virtual Data Centers (VDCs). This raises the problem of
optimally allocating both servers and data center networks to
multiple VDCs in order to maximize the total revenue, while
minimizing the total energy consumption in the data center.
However, despite recent studies on this problem, none of the
existing solutions have considered the possibility of using VM
migration to dynamically adjust the resource allocation, in order
to meet the fluctuating resource demand of VDCs.

In this paper, we propose VDC Planner, a migration-aware
dynamic virtual data center embedding framework that aims
at achieving high revenue while minimizing the total energy
cost over-time. Our framework supports various usage scenarios,
including VDC embedding, VDC scaling as well as dynamic VDC
consolidation. Through experiments using realistic workload
traces, we show our proposed approach achieves both higher
revenue and lower average scheduling delay compared to existing
migration-oblivious solutions.

I. INTRODUCTION

Cloud computing is a model that promises to allocate

resources to large-scale service applications in an on-demand

fashion. In a cloud computing environment, the traditional role

of service providers is divided into two: The Infrastructure

Providers (InPs) own the physical resources in data centers,

and lease them using a pay-as-you-go pricing model, while the

Service Providers (SP) rent the resources offered by InPs and

provide services to end users over the Internet. Traditionally,

InPs offer resources in terms of Virtual Machines (VMs), and

ignore network requirements imposed by the services running

in these VMs. This has led to a number of issues regarding

network performance, security and manageability [3].

To address these limitations, recent research proposals have

advocated to offer Virtual Data Center (VDCs) instead of

VMs [10], [2]. A VDC consists of virtual machines (VMs)

connected through virtual switches, routers and links with

guaranteed bandwidth. Compared to traditional VM-based

offerings, selling resources in the form of VDCs allows SPs

to achieve better performance isolation and Quality of Service

(QoS) for their applications. Moreover, the InP can make more

informed decisions for traffic engineering given VDC-specific

traffic requirements, which eases the burden for network

management.

However, despite its benefits, designing an efficient resource

management scheme for VDCs is a challenging problem. One

of the key challenges is the VDC embedding problem, which

consists in mapping VDC components (e.g., virtual machines,

virtual switches and links) onto physical nodes and links. From

an InP’s perspective, the goal is to adopt efficient allocation

schemes to maximize the net income while satisfying the

resource requirements (CPU, memory, disk and bandwidth)

of each embedded VDC. This can be divided into several

inter-dependent objectives: (1) maximizing the total revenue

obtained from the embedded VDC requests, (2) minimizing

request scheduling (i.e., queuing) delay, which refers to the

time a request spends in the waiting queue before it is sched-

uled, and (3) minimizing the total energy consumed by the

data center. The scheduling delay is an important performance

metric not only because it concerns the responsiveness of the

cloud data center to demand fluctuations, but also because it

affects the performance of cloud applications (e.g., running

time of MapReduce jobs) [18]. It is noteworthy that VDC

embedding is an NP-hard problem as it generalizes the bin-

packing problem.

To make the matter worse, InPs can offer more flexibility

to SPs by allowing them to scale up and down their VDCs

according to their needs. For instance, a SP can ask for an

increase of the VDC capacity in terms of VMs and virtual

links to accommodate rapid increase in service demand. It

can also reduce the size of its VDC during idle periods

to save resource rental cost. Although flexibility is a key

advantage of cloud computing, previous works related to VDC

embedding do not focus on the management of such re-

scaling operations. Yet, scaling up embedded VDCs is not

trivial. For example, a SP may wish to increase the bandwidth

allocation for a given embedded VM but the physical machine

that hosts this VM may not have sufficient free bandwidth

to support this operation. On the other hand, scaling down

embedded VDCs is an opportunity to reduce operational costs.

In particular, scaling down VDCs reinforces interest of VM

consolidation algorithms [13], [12], [19], [16], [17], which
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aim at maximizing the utilization of active machines while

allowing idle machines to be turned off.

To accommodate flexibility in VDC embedding, a simple

yet common solution is to re-embed the VDC from scratch

(e.g., [4]). This solution can however result in disrupting

services supported by the VMs. A more promising solution

is to migrate some embedded VMs from a physical machine

to another. However, migrating VMs has associated costs in

terms of service disruption and bandwidth usage. In particular,

migrating a VM can cause the VM to run at reduced speed,

thereby violating the Service Level Agreement (SLA). Such

a violation is translated into a penalty that the InP has to

pay. Hence, the InP must weigh the benefit and the cost

of a migration and make the right decision that minimizes

his overall costs. Previous works related to VM migration

neither address VDC embedding, nor take into account all the

parameters in terms of management, migration and impact on

performance.

To address the aforementioned challenges, we introduce

VDC Planner, a framework that supports migration-aware

virtual data center embedding. Migration is a key feature in

VDC Planner: it is used to both improve VDC embedding

capability and better support the scaling up and down of

requests. VDC Planner differs from previous work on VDC

embedding mainly in the fact that it is migration-aware, and

uses migration to improve solution quality while minimizing

total migration costs. In this perspective, we provide a general

formulation of the problem of embedding and scaling up/down

VDC requests while considering the migration cost. To the best

of our knowledge, our formulation is the first one to consider

migration cost and multiple types of resources.

The rest of this paper is organized as follows. In Section 2,

we survey recent research effort related to migration-aware

VDC embedding. We formulate the migration-aware VDC

problem in Section 3. Section 4 provides an overview of

VDC Planner and describes various usage scenarios and our

proposed algorithm for each of them. We demonstrate the

effectiveness of VDC Planner in Section 5 and conclude the

paper in Section 6.

II. RELATED WORK

Realizing that data center networks today do not provide

performance isolation between collocated service applications,

there is an emerging trend towards virtualizing data center

networks to provide guaranteed network bandwidth to each

service application. In this context, a key research challenge

is to find scalable yet efficient resource allocation schemes

that simultaneously allocate both VMs and network resources.

Recently a number of proposals have been put forth to address

this challenge. In particular, SecondNet [10] is a data center

network virtualization architecture that defines a virtual data

center as an abstraction for resource allocation in data center

environments. It provides a greedy heuristic for the VDC

embedding problem. Similarly, Oktopus [2] proposed two

abstractions (virtual cluster and virtual oversubscribed cluster)

that can be allocated efficiently in tree-like data center network

topologies. However, both SecondNet and Oktopus do not

consider the cost of VM migration in their resource allocation

algorithms. Furthermore, none of them have considered energy

consumption in their embedding decisions.

The VDC embedding problem also shares many similarities

with traditional virtual network (VN) embedding [7]. For

instance, Chowdhury et al. proposed algorithms that provide

coordinated embedding of both virtual nodes and links [6].

Butt et al. [8] studied the problem of topology-aware VN

embedding and re-optimization that leverages migration tech-

niques. However, VN embedding models differs from VDC

embedding in that they only consider CPU and network

resources, whereas in VDC embedding other resources such

as memory and disk also need to be considered. Finally,

minimizing energy consumption has not been addressed in

existing VN embedding models.

There has been also a large body of work on VM migration

schemes in data centers. For instance, Entropy [12] is a

resource management framework that relies on VM migration

to dynamically achieve server consolidation while meeting

requirements of all VMs in terms of processing and memory

capacity. It models the optimal VM placement as a variant

of the vector bin-packing problem, and solves it by means of

Constraint Satisfaction Programming (CSP). pMapper [14] is

a dynamic server consolidation framework that takes into ac-

count VM migration cost. It relies on greedy heuristics to solve

the optimal VM placement problem. However, both Entropy

and pMapper have not considered network requirement and

locality when making consolidation decisions. More recently,

Shrivastava et al. proposed AppAware [13], a network-aware

VM migration scheme that minimizes the network distance

between communication-dependent VMs while minimizing

migration costs. However, energy consumption is not consid-

ered in their framework. Wang et al. [15] studied the problem

of VM consolidation with stochastic bandwidth demands and

proposed an online approximation algorithm for the problem.

However, VM migration cost is not considered in their model.

III. MODELS FOR MIGRATION-AWARE VDC EMBEDDING

In this section, we present a mathematical formulation of

the embedding problem that considers migration. We first

introduce the general long-term model from the perspective of

an InP. Then, we present the model for the one-shot migration-

aware VDC embedding, which is applied upon the receival

of a VDC request (either an initial embedding or a scale-up

request).

A. General Long-term Embedding Formulation

In a nutshell, migration-aware VDC embedding leverages

migration techniques to achieve effective and efficient place-

ment of VDCs over time. In this section, we introduce a

formal model for migration-aware VDC Embedding. In our

model, time is divided into slots of equal duration1. Let

Ḡ = (N̄ , L̄) represents the data center network, where N̄

1We can adjust the length of time slots to simulate VDC embedding in
continuous time.
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consists of physical nodes (i.e., servers and switches) and L̄

represents physically links. Define yn̄(t) ∈ {0, 1} as a variable

that indicates whether physical node n̄ ∈ N̄ is active, and

pn̄ ∈ R
+ as the cost for using physical machine n̄ during

each time slot. For instance, pn̄ can be the energy cost. Thus,

the total cost during time slot t can be computed as

C(t) =
∑
n̄∈N̄

yn̄(t)pn̄ (1)

Let Gi = (N i, Li) represent the VDC request i, where N i

is the set of virtual nodes and Li represents the set of virtual

links. Let It denote the set of VDC requests available at the

end of the time slot t. More specifically, define Dt as the set

of VDC requests arrived during the time slot t, and Lt as the

set of VDC request that have left the system during the same

interval (e.g., due to request completion or withdrawal). We

can compute It using the following equation:

It+1 = It ∪Dt\Lt (2)

Define At ⊆ It as the set of running VDCs. Let mn(t) ∈
{0, 1} be an integer variable that denotes whether n ∈ N i has

been migrated during time slot t, and gn(t) denote the cost of

this migration, the total migration cost during time slot t can

be computed as

M(t) =
∑
i∈At

∑
n∈Ni

mn(t)gn(t) (3)

Note that the migration cost is expressed as a penalty for the

service disruption caused by migration. Similar penalties are

applied in practice (e.g., penalty imposed to Amazon EC2 for

violating VM availability SLA) [1].

On the other hand, for each VDC i ∈ It\At that is waiting

to be scheduled, we assume there is a penalty σi(t) that is

proportional to the request waiting delay.

P(t) =
∑

i∈It\At

σi(t) (4)

We also assume for each VDC i there is a revenue Ri(t)
earned by the InP during time slot t. We assume that Ri(t) is

proportional to a weighted sum of the total resources (CPU,

memory, disk, bandwidth) used by VDC i during time slot

t. Therefore, the objective of the InP is to maximize the

difference between the revenue and the costs, which includes

migrations and energy costs, as well as penalties due to

scheduling delays:

max

(
lim

T→∞

1

T

T∑
t=0

(∑
i∈At

Ri(t)− C(t)−M(t)− P(t)

))

(5)

However, this problem is intractable because it requires solv-

ing a multi-dimensional bin-packing problem dynamically

over time. Even the static version of the problem generalizes

the NP-hard multi-dimensional bin-packing problem. Due to

its high complexity, it is not possible to solve the problem

directly in a timely manner given the large number of physical

machines and VDCs in typical production data centers. There-

fore, a more scalable yet cost-effective solution is needed.

B. One-shot Migration-aware Embedding Formulation

Since the optimal dynamic VDC embedding problem is

difficult to solve, it is necessary to break down the problem

based on usage scenarios. In this section, we present a formal

model for one-shot migration-aware VDC embedding, whose

objective is to deal with either an initial embedding request or

a scaling up request. Since we focus on one-shot embedding,

we can omit the notion of time in this model.

Specifically, given a data center network Ḡ = (N̄ , L̄), let R

denote the different types of resources offered by each node

(e.g., memory and CPU for servers). Assume each node n̄ ∈ N̄

has a capacity crn̄ for each resource type r ∈ R, and each link

l̄ ∈ L̄ has a bandwidth capacity bl̄. Furthermore, every physical

link l̄ has a source node and a destination node. We define

s̄n̄l̄ =

{
1 if n̄ is the source of l̄

0 otherwise
(6)

and

d̄n̄l̄ =

{
1 if n̄ is the destination of l̄

0 otherwise
(7)

as boolean variables that indicate whether n̄ is the source and

destination node of l̄ ∈ L̄, respectively. Similarly, we assume

there is a set of VDC requests I , each request i ∈ I asks for

embedding a VDC Gi = (N i, Li). We also assume each node

n ∈ N i has a capacity cirn for resource type r ∈ R, and each

link l ∈ Li has a bandwidth capacity bl. We define snl and

dnl as boolean variables that indicate whether n is the source

and destination node of l ∈ Li, respectively

Let xi
nn̄ ∈ {0, 1} be a boolean variable that indicates

whether virtual node n of VDC i is embedded in substrate

node n̄, and f i
ll̄

∈ R
+ be a variable that measures the

bandwidth of edge l̄ allocated for virtual link l ∈ Li. To

ensure no violation of the capacities of physical resources,

the following constraints must be satisfied:∑
i∈I

∑
n∈Ni

xi
nn̄c

ir
n ≤ crn̄ ∀n̄ ∈ N̄ , r ∈ R (8)

∑
i∈I

∑
l∈Li

f i
ll̄ ≤ bl̄ ∀l̄ ∈ L̄ (9)

We also require link embedding to satisfy the flow constraint

between every source and destination node pairs in each VDC

topology, formally:

−
∑
l̄∈L̄

d̄n̄l̄f
i
ll̄ +

∑
l̄∈L̄

s̄n̄l̄f
i
ll̄ =

∑
n∈Ni

xi
nn̄s

i
nlbl −

∑
n∈Ni

xi
nn̄d

i
nlbl

∀i ∈ I, l ∈ Li, n̄ ∈ N̄ (10)

Here
∑

n∈Ni xi
nn̄s

i
nl is equal to 1 if n is the source of the

link l of VDC i and n is embedded in the physical node n̄.

Equation 10 essentially states that the total outgoing flow of

a physical node n̄ is equal to the total incoming flow unless

n̄ hosts either a source or a destination virtual node. Next, we

need to consider node placement constraints. We define
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x̃i
nn̄ =

{
1 if node n of VDC i can be embedded in n̄

0 otherwise
(11)

that indicates whether virtual node n can be embedded in

physical node n̄. For example, VMs can only be embedded

in physical machines and not in switches. Thus, if a virtual

node n from VDC i is a virtual server, we have x̃i
nn̄ =

0∀n̄ ∈ N̄s and x̃i
nn̄ = 1∀n̄ ∈ N̄m where N̄s and N̄m are the

sets of physical switches and physical machines, respectively

(i.e., N̄ = N̄s ∪ N̄m). The placement constraint describes also

whether a switch can be embedded exclusively in physical

switches or in physical servers or in both types of equipment.

This constraint is captured by the following equation:

xi
nn̄ ≤ x̃i

nn̄ ∀i ∈ I, n ∈ n, n̄ ∈ N̄ (12)

To ensure embedding of every virtual node n, we must have:∑
n̄∈N̄

xi
nn̄ = 1 ∀i ∈ I, n ∈ N i (13)

In our model, we also define yn̄ as a boolean variable that

indicates whether physical node n̄ is active. A physical node

is considered active if it hosts at least one virtual node. This

implies the following constraints must hold:

yn̄ ≥ xi
nn̄ ∀i ∈ I, n ∈ N i, n̄ ∈ N̄ (14)

yn̄ ≥ 1

bl
f i
ll̄s̄n̄l̄ ∀i ∈ I, n̄ ∈ N̄ , l ∈ Li, l̄ ∈ L̄ (15)

yn̄ ≥ 1

bl
f i
ll̄d̄n̄l̄ ∀i ∈ I, n̄ ∈ N̄ , l ∈ Li (16)

Finally, we also consider the migration cost. In our formu-

lation, we treat migration cost as a one-time embedding cost.

The one-time embedding cost ginn̄ of a virtual node n of VDC

i in substrate node n̄ ∈ N is given by:

ginn̄ =

⎧⎪⎨
⎪⎩
mig(n, m̄, n̄) if n̄ 	= m̄

0 if n̄ = m̄

0 if n is currently not embedded

where mig(n, m̄, n̄) denotes the cost of migrating virtual node

n from substrate node m̄ to substrate node n̄. Thus, when a

virtual node n is already embedded in a physical node m̄ and

needs to be migrated to n̄ , the one-time embedding cost is

equal to the migration cost. This cost is equal to zero when n

is already embedded in the physical node n̄ (i.e., m̄ = n̄). It

is also zero when the node n is embedded for the first time.

The ultimate goal of the migration-aware embedding can be

stated by finding an embedding that achieves

min
∑
k∈K

(
∑
n̄∈N̄

yn̄pn̄ +
∑
i∈I

∑
n∈Ni

∑
n̄∈N̄

γnx
i
nn̄g

i
nn̄), (17)

subject to equations (8) - (16). Here, γn is a weight factor that

captures the tradeoff between migration costs and operational

costs. Even though the migration-aware embedding problem

is easier than the original online embedding problem, it is

still difficult to solve as it generalizes a multi-dimensional bin

packing problem.

VDC1 VDC2 VDC2

Physical Data Center

Mapping of virtual components to physical components

Migration-Aware 

VDC Scheduler

VDC 

Consolidation 

Module

Resource 

Monitor

Service Providers

VDC Embedding / Scaling Request

Migration 

Decision

Scheduling / 

Migration Decision

Resource 

Information

Figure 1: VDC Planner Architecture

IV. VDC PLANNER

In order to reduce the complexity of the online VDC embed-

ding problem, we have designed VDC Planner, a framework

that provides cost-effective VDC embedding in production

data centers. Instead of solving the online problem directly,

VDC Planner divides the overall problem into several usage

scenarios, such that each scenario can be solved effectively

and efficiently. We describe hereafter the overall architecture

as well as our heuristic algorithms for each scenario.

A. Architecture

The architecture of VDC Planner is shown in Figure 1. It

consists of the following components:

• VDC Scheduler: Upon receiving a VDC request from

a SP, the VDC Scheduler is responsible for scheduling

the VDC on the available physical machines. If there is

no feasible embedding in data center, the request is kept

in a scheduling queue until the SP decides to withdraw

it. Different from existing VDC embedding algorithms,

our VDC scheduler leverages migration to improve the

revenue gain from embedding VDC requests.

• Resource Monitor: The Resource Monitor is in charge of

monitoring the physical and virtual data centers. It also

notifies the VDC scheduler if a failure of any physical or

virtual node occurs in the data center.

• VDC Consolidation Module: The VDC Consolidation

Module consolidates the VDCs over time in order to

reduce resource fragmentation (i.e., residual capacities

in physical machines and network components that are

not capable of scheduling any VDC components). VDC

consolidation improves the overall resource utilization of
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Figure 2: Scenarios for dynamic VDC embedding

the data center and maximizes the number of machines

that can be turned off.

Our strategy for reducing the complexity of migration-aware

VDC embedding is to divide the overall problem into several

“scenarios”, such that each scenario can be easily addressed.

Figure 2 illustrates the scenarios we consider for VDC Planner.

They can be described as follows:

• Initial VDC Embedding: A SP submits a new VDC

request and the scheduler has to map it onto the physical

data center. When the data center is heavily loaded, it may

be impossible to embed the VDC due to lack of space.

In this case, VM migration can adjust previous resource

allocations in order to accommodate the new request.

• VDC Scaling: A SP requests the topology of VDC to

be dynamically scaled up and down. For example, if

the SP runs a Web application in the data center and

it experiences a demand spike, he can submit a request

to increase the resource allocation of his VDC. Migration

can also be used to increase the chance of satisfying the

embedding request, while minimizing the total bandwidth

usage for satisfying the requests.

• Dynamic VDC Consolidation: As VDCs continuously

enter and leave the system, the VDC embedding can be-

come obsolete and suboptimal. We believe it is beneficial

to re-optimize the embedding of VDCs at run-time in

order to achieve better server and network consolidation.

Overtime, this allows more physical servers and network

components (e.g., switches and ports) to be turned off to

save energy cost [11].

We have developed two heuristic algorithms to support the

above scenarios. The first heuristic is designed for migration-

aware VDC embedding. It leverages migration to handle VDC

embedding as well as scaling up requests. The second heuristic

is designed for dynamic VDC consolidation. It also utilizes

migration to improve utilization and save energy. We describe

each heuristic separately in the following subsections.

B. Migration-Aware VDC Embedding Heuristic

We describe now our heuristic for migration-aware VDC

embedding. Given a VDC embedding request (either an initial

embedding or scaling up request), the goal is to find a feasible

embedding of the request that incurs minimal migration cost.

Our heuristic is depicted by Algorithm 1. Intuitively, upon

receiving a VDC request i, the algorithm first sorts the physical

machines based on whether they are active or inactive. It

then sorts virtual nodes in the request based on their size.

Specifically, for each n ∈ N i, we define its size sizein as

sizein =
∑
r∈R

wrcirn , (18)

where wr is a weight factor for resource type r. The intuition

is that sizein measures the difficulty of embedding node n.

Accordingly, wr is selected based on the scarcity of resource

type r ∈ R.

After sorting all virtual nodes in N i according to sizein, our

algorithm then tries to embed each node in the sorted order,

based on whether it is connected to any embedded nodes. For

each selected node n ∈ N i and each physical node n̄ ∈ N̄ ,

the algorithm computes the embedding cost costi(n, n̄) as:

costi(n, n̄) = γn(mig(n, m̄, n̄) +MigOther(n, n̄))

+
∑

n′∈Ni:(n′,n)∈Li

d(n̄′, n̄) · b(n′,n) (19)

where the last term represents the communication distance

d(n̄′, n̄) weighted by the bandwidth requirement b(n′,n) be-

tween n̄ and the other node n′ ∈ N i that is embedded

on physical node n̄′. If a particular n′ is not embedded,

d(n̄′, n̄) is set to zero. The intuition here is to minimize the

communication distance between virtual nodes in order to

reduce bandwidth consumption. In the long run, it also allows

more physical network devices to be turned off.

Finally, MigOther(n, n̄) is the cost of migrating away the

VMs not belonging to Gi on n̄ in order to accommodate

n on n̄. This is similar to the migration plans defined in

Entropy. Formally, we denote by loc(n̄) the set of virtual

nodes hosted on physical node n̄. Let mig(ñ, n̄) denote the

minimum cost for migrating away ñ ∈ loc(n̄) to another node

that has capacity to host ñ with minimum distance. Computing

MigOther(n, n̄) becomes a problem of migrating away a set

of node Ñ located on n̄ such that there is enough capacity to

accommodate n on n̄, while minimizing the total migration

cost:

min
xñ∈{0,1}

∑
ñ∈loc(n̄)

xñmig(ñ, n̄)

s. t.
∑

ñ∈loc(n̄)

xñc
r
ñ ≥ cirn ∀r ∈ R

This problem generalizes a minimum knapsack problem [5],

which is NP-hard. We adopt a simple greedy algorithm to

solve the problem. In particular, for a virtual node ñ ∈ loc(n̄)
that belongs to VDC j, we compute a cost-to-size ratio rñ:

rñ =
mig(ñ, n̄)∑
r∈R wrc

jr
ñ

(20)

Then, we sort loc(n̄) based on the values of rñ, and greedily

migrate away ñ ∈ loc(n̄) in the sorted order until there is

sufficient capacity to accommodate n on n̄. The total migration
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Algorithm 1 Algorithm for embedding VDC request i

1: Sort N̄ based on their states (active or inactive)

2: S ← N i

3: repeat

4: Let C ⊆ S be the nodes that are connected to already

embedded nodes

5: if C = ∅ then

6: Sort S according sizein defined by equation (18).

7: n∗ ← first node in S

8: else

9: Sort C according sizein defined by equation (18).

10: n∗ ← first node in C

11: end if

12: for n̄ ∈ N̄ in sorted order do

13: Compute embedding cost costi(n∗, n̄) according to

equation (19). If not feasible, set costi(n∗, n̄) = ∞.

14: end for

15: if costi(n∗, n̄) = ∞∀n̄ ∈ N̄ then

16: return VDC i is not embeddable

17: else

18: Embed n∗ on the node n̄ ∈ N̄ with the lowest

costi(n, n̄).
19: S ← S\n∗

20: end if

21: until S == {∅}

cost of this solution produces MigOther(n, n̄). If there is no

feasible solution, we set MigOther(n, n̄) = ∞. Lastly, for

a selected node n∗, once the embedding cost costi(n, n̄) is

computed for every n̄ ∈ N̄ , we embed n∗ on the node with

the minimum value costi(n∗, n̄). The algorithm repeats until

all nodes in N i are embedded, or costi(n∗, n̄) = ∞, which

indicates VDC i is not embeddable.

As for the running time of the algorithm, line 4 takes

O(n) time to complete as it essentially partitions the physical

machines into active and inactive machines. Line 6 and 9 take

O(|N i|) time to execute assuming the number of resource

types is constant. Line 13 requires running the greedy algo-

rithm for the minimum knapsack problem. Assume each physi-

cal node can host at most nmax virtual nodes, the running time

of the greedy minimum knapsack problem is O(|N̄ |nmax).
The remaining lines each takes O(1) time to run. Thus, the

total running time of the algorithm is O(|N i||N̄ |nmax).

C. Dynamic VDC Consolidation Algorithm

The previous heuristic leverages migration to maximize

the number of number of VDC requests. However, as VDC

requests can scale down and leave the system over time, a

large number of physical nodes may become under-utilized.

In production data centers, this typically happens at night

time, where the number of VDC requests becomes low. In

this case, we would like to dynamically consolidate VDCs

such that a large number of physical machines can be turned

off. We point out that VDC Planner merely tries to minimize

the number of active machines used by VDCs. Deciding the

Algorithm 2 Dynamic VDC Consolidation Algorithm

1: Let S̄ represent the set of active machines

2: repeat

3: Sort S̄ in increasing order of Un̄ according to equation

(21).

4: n̄ ← next node in S̄

5: S ← loc(n̄)
6: Sort S according to sizein defined in equation (18).

7: for n ∈ S do

8: n ← next node in S. Let i denote the VDC to which

n belongs

9: Run Algorithm 1 on VDC i over S̄\{n̄}.

10: end for

11: cost(n̄) ← the total cost according to equation (17)

12: if cost(n̄) ≤ pn̄ then

13: Migrate all virtual nodes according to Algorithm 1

14: Set n̄ to inactive

15: end if

16: S̄ ← S̄\{n̄}
17: until Un̄ ≥ Cth

number of machines to be turned on a particular time is a

different problem that has been studied extensively (e.g., [18]).

Thus, existing techniques can be readily applied to control

the number of active machines. Our migration-aware dynamic

VDC consolidation algorithm is represented by Algorithm 2.

Specifically, the algorithm first sort the physical nodes in

increasing order of their utilizations. For each n̄ ∈ N̄ , we

define the utilization Un̄ as the weighted sum of the utilization

of each type of resources:

Un̄ =
∑
r∈R

∑
i∈I

∑
n∈Ni:n∈loc(n̄)

wrcirn
crn̄

, (21)

The intuition here is to select the nodes with lowest utilization

as candidate for consolidation. Once physical nodes are sorted,

for each physical node, we sort virtual nodes n ∈ loc(n)
according to their size sizein. Let i denote the VDC that n

belongs to. We then run Algorithm 1 on VDC i with physical

nodes excluding n̄. This will find an embedding where n̄ is

not used, (i.e., n has been migrated to different physical node).

Once all virtual nodes have been migrated, we compute the

cost of the solution according to equation (17) and compare it

to the energy saving, which is represented by pn̄. If the total

saving is greater than the total cost of the solution, migration is

performed and n̄ becomes inactive. Otherwise, the algorithm

proceeds to the next physical node n̄ in the list until the

cluster is sufficiently consolidated (i.e., all the utilizations of

the machines in the cluster have reached a threshold Cth.

Using the algorithm, the VDC consolidation component is

able to make dynamic consolidation decisions that consider

migration cost.

Finally, we analyze the running time of the algorithm. Line

3 takes O(|N̄ |) time to complete assuming the number of

resource types is constant. Line 6 takes O(nmax log(nmax))
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Figure 3: Migration-aware embedding vs. baseline algorithm

time to complete. Line 9 runs algorithm 1, which takes

O(|N i||N̄ |nmax) time to complete. Line 13 takes O(nmax)
time to finish. The remaining lines each takes O(1) time to

complete. Thus, the total running time of the algorithm is

O(|N̄ |2 log |N̄ |+ |N̄ |n2
maxNmax) assuming the maximum of

virtual nodes per VDC is Nmax.

Lastly, we need to answer the question that when VDC con-

solidation should be performed at run time. A naïve solution

is to perform VDC consolidation periodically. However, we

have found that periodic consolidation may not be beneficial

when request arrival rate is high. In this case, even if we

can reduce the number of active machines for a particular

time instance, the high arrival rate of new VDC requests will

force more machines to be active, rendering the consolidation

effort ineffective. Motivated by this observation, we perform

VDC consolidation only when arrival rate is low over a period

of time (i.e., below a threshold λth requests per second over

T minutes). Even though more sophisticated techniques such

as predicting the future arrival rate allows for more accurate

consolidation decisions, we have found in our experiments that

this simple policy achieves a good balance between migration

cost and energy cost at run time.

V. EXPERIMENTS

We have implemented VDC Planner and evaluated its per-

formance through simulations. Specifically, we have simulated

a data center with 400 physical machines, 4 top-of-rack

switches, 4 aggregation switches and 4 core switches. We

used the VL2 topology described in [9], which provides full

bisection bandwidth in the data center network.

In our experiments, VDC requests arrive following a Pois-

son distribution with an average rate of 0.01 requests per sec-

ond during night time and 0.02 requests per second during day

time. This reflects the time-of-the-day effect where resource

demand is higher during day time. For convenience, we set

γn = 1, and λth = 0.015. In practice, the value of λth can be

obtained through experience. The number of VMs per VDC is

generated randomly between 1 and 20. In our simulations, each

physical machine has 4 CPU cores, 8GB of memory, 100GB of

disk space, and contains a 1Gbps network adapter. The size of

each VM for CPU, memory and disk are generated randomly

between 1 − 4 cores, 1 − 2GB of RAM and 1 − 10GB of

disk space, respectively. The bandwidth requirement between

any pair of VMs belonging to the same VDC is generated

randomly between 1 and 10Mbps. Furthermore, the lifetime

of VDCs follows an exponential distribution with an average

of 3 hours. In our implementation, a VDC can wait in the

queue for a maximum duration of 1 hour after which it is

automatically withdrawn.

In our first experiment, we evaluated the revenue gain

achieved when using the migration-aware embedding algo-

rithm compared to a baseline algorithm similar to Second-

Net that does not consider VM migration and energy-aware

VDC consolidation. Let Rm and Rn denote the infrastructure

provider’s income over a period of time using the migration-

aware algorithm and the baseline algorithm, respectively. The

revenue gain is defined as

Gm/n = 100× Rm

Rn
− 100. (22)

The same formula is used to compute the gain in terms of

request acceptance ratio (i.e., successfully embedded VDC

requests divided by the total number of received VDC re-

quests), and the number of inactive machines. Figure 3a

and Figure 3b show the instantaneous revenue gain and the

increase in acceptance ratio, respectively. Every point in each

figure represents the gain over a one-minute interval. It can

be seen that from midnight till the morning, the migration-

aware algorithm is providing the same revenue as the baseline

approach. However, during the day time when resource de-

mand is high, the migration-aware embedding algorithm can

achieve up to 17% revenue gain over the baseline approach.

This is expected since during idle periods (e.g., night time),

it is easy to embed VDC requests given the ample free

capacities in the data center. However, when the cluster is

busy, it becomes difficult to embed VDC requests directly.

In this case, migration-aware approach is able to leverage

migration to find room for incoming VDC requests. This result

is also confirmed by Figure 3b which shows an improvement

of 10% in terms of VDC requests acceptance ratio during

busy periods. We also compare the queuing delay experienced

by the VDC requests. Figure 3c compares the Cumulative

Distribution Function (CDF) of scheduling delays achieved by
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Figure 4: Number of used machines compared to the baseline

algorithm.

each of the studied algorithms. It is clear that the migration-

aware approach significantly reduces the average scheduling

delay. In particular, our algorithm can reduce the scheduling

delay by up to 25%.

On the other hand, even though the migration-aware em-

bedding algorithm is able to improve InP’s revenue, it uses

more physical machines to host embedded VDCs than the

baseline algorithm, as shown in Figure 4a. Therefore, we

also implemented the dynamic VDC consolidation algorithm

as described in Section IV-C to reduce the number of used

physical machines. Figure 4b shows that the migration-aware

embedding along with the consolidation algorithm use up to

14% less machines than the baseline approach. The benefit is

apparent especially at night (8pm to midnight) when VDCs

are leaving the system. We also notice that, by reducing the

number of active machines, consolidation also improves the

income as defined in Eq.(5). Combining consolidation with

the migration-aware embedding technique, we found that VDC

Planner can achieve up to 15% increase in the net income

compared to the baseline algorithm.

VI. CONCLUSIONS

The need to support network performance isolation and QoS

guarantee in public clouds led a number of recent research

proposals to advocate allocating resources to SPs in the form

of virtual data centers that include both guaranteed server

and network resources. A key challenge that needs to be

addressed in this context is dynamic VDC embedding problem,

which aims at optimally allocating resources to multiple VDCs

while at the same time maximizing the total revenue and

minimizing the total energy consumption in the data center.

However, despite some recent studies, existing solutions have

not considered the problem in a dynamic and online setting,

where migrations can be utilized to flexibly and dynamically

adjust the allocation of physical resources.

In this paper, we have described VDC Planner, a migration-

aware dynamic virtual data center embedding framework that

aims at achieving high revenue while minimizing the total

energy cost over-time. Our framework supports various sce-

narios, including VDC embedding, VDC scaling as well as

dynamic VDC consolidation. Through simulation experiments,

we showed our proposed approach is able to achieve higher

net income as well as lower scheduling delay compared to

existing migration-oblivious solutions.
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