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Abstract—With the proliferation of cloud computing, virtu-
alization has become the cornerstone of modern data centers
and an effective solution to reduce operational costs, maximize
utilization and improve performance and reliability. One of the
powerful features provided by virtualization is Virtual Machine
(VM) migration, which facilitates moving workloads within the
infrastructure to reach various performance objectives. As recent
virtual resource management schemes are more reliant on this
feature, a large number of VM migrations may be triggered
simultaneously to optimize resource allocations. In this context,
a challenging problem is to find an efficient migration plan,
i.e., an optimal sequence in which migrations should be triggered
in order to minimize the total migration time and impact on
services.

In this paper, we propose CQNCR (read as sequencer), an
effective technique for determining the execution order of massive
VM migrations within data centers. Specifically, given an initial
and a target resource configuration, CQNCR sequences VM
migrations so as to efficiently reach the final configuration with
minimal time and impact on performance. Experiments show
that CQNCR can significantly reduce total migration time by up
to 35% and service downtime by up to 60%.

I. INTRODUCTION

With the rise of cloud computing, virtualization has become
a key technology that enables IT companies to better manage
their data centers and cloud environments. Recent advances
in virtualization have allowed to partition a cloud data center
into multiple Virtual Data Centers (VDCs) intended to host and
run different applications and services in a completely isolated
manner [4], [5], [10], [21]. Specifically, a VDC encompasses
Virtual Machines (VMs) and virtual links with guaranteed
bandwidth capacity, allowing to provide predictable computing
and networking performance.

Of course, several management frameworks have been
proposed to efficiently manage VDCs and achieve various
objectives related to performance, cost and survivability. In this
context, VM migration has been the ultimate tool to dynami-
cally reconfigure and re-optimize the resource allocations [6],
[12], [18], [21]. Depending on the targeted objective, a set of
VM migrations can be triggered to reach the required resource
configuration. However, these migrations may have several
impacts on network and service performance:

e Resource consumption. The migration process consumes
resources (e.g., CPU, memory) either at the source or
at the destination physical machines [18], [19]. This
significantly impacts the performance of other VMs shar-
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ing these machines [16]. Indeed, although theoretically
VMs have dedicated and isolated resources, in practice,
current hypervisors are not able to guarantee effective
performance isolation [19].

e Network congestion. When massive migrations are trig-
gered, VMs may be transferred using migration paths
sharing some common links. This may eventually cause
network congestion, resulting in degraded performance in
terms of latency and packet loss.

o Long provisioning time. A long duration of the migrations
may prevent cloud providers from allocating new VDCs
or may prolong the resource allocation process. For
instance, resource allocation scheme proposed in [12],
[21] requires to migrate some VMs in order to make room
for any incoming VDC. In this case, it is necessary to
reduce their migration time in order to allocate resources
for the new VDC with the least possible delay.

o Service disruption time. Several techniques have been
proposed in the literature to ensure a seamless and
efficient live migration [6]. Nevertheless, VMs still expe-
rience non-negligible downtimes during their migrations
[15], [16]. In practice, any service disruption, even for
very short periods, may have serious impact on service
revenues and cloud provider’s reputation. For some ser-
vices, one second of downtime may result in as much as
$1,100 losses in revenue [1].

To alleviate these impacts, one possible solution is to minimize
the total migration time of the VMs by finding an efficient
VM migration plan i.e., an optimal sequence of migrations
ensuring that (1) the amount of bandwidth used for migration
is maximized, (2) the migration paths are carefully selected
to avoid network congestion, and (3) the number of parallel
migrations of VMs is maximized, notably of those belonging
to the same VDC so as to reduce its disruption time.

As network resources are allocated for the VDCs, VMs
are migrated using only the residual (i.e., unused) bandwidth
of the physical links.! Hence, the higher is the residual
bandwidth, the lower is the migration time. Typically, when
a VM is moved to a new location, its associated virtual links
are also migrated. This changes the residual bandwidth in the

'We assume that there is no alternate network dedicated to VM migrations
since its deployment is costly and may not be possible in large-scale
infrastructures [16]. Nevertheless, even if such network is set up, our solution
can still be used to achieve objectives (2) and (3) mentioned above.



physical links, which, in turn, impacts the duration of the
subsequent migrations and their incurred service disruption
time; Hence the need to find an optimal migration plan that
minimizes the total migration time and impact on the network
and service quality.

To address this challenge, we propose CQNCR (read as
sequencer), a migration manager that orchestrates and exe-
cutes massive VM migrations in data centers with the goal
of minimizing their overall migration time and overhead.
Unlike previous work [3], [11], [12], the proposed solution
takes into consideration the change of residual bandwidth at
each step of the migration plan and also maximizes parallel
migrations while avoiding potential bottlenecks in the net-
work. More importantly, CQNCR can be easily incorporated
into VM/VDC management frameworks like SandPiper [18],
VDC Planner [21] and SecondNet [10] to further optimize the
execution of the triggered migrations and improve the overall
performance of the network and services.

The rest of the paper is organized as follows. We first
provide background material in Section II. Section III presents
an illustrative example showing how different migration plans
can impact the total migration and service disruption times.
Section IV surveys the related work on VM/VDC management
frameworks and migration planning. We then formulate the
VDC migration planning problem as an Integer Linear Pro-
gram (ILP) in Section V. The proposed solution is presented
in Section VI. Then we provide performance evaluation results
in Section VII and some conclusions in Section VIII.

II. BACKGROUND

A large body of work has been devoted to live migration
techniques [6]. The main goal of live migration is to relocate
a VM with the minimum possible service disruption time.
Generally speaking, two main approaches were proposed in
the literature: post-copy and pre-copy migration [13].

As the pre-copy migration is the most common approach
that is already implemented in the state-of-the-art hypervisors
(e.g., VMware, XEN, KVM) [13], we adopt this approach
in this work, and hence we only provide its details in the
following paragraph. As shown in Fig. 1, in a pre-copy live
migration, the VM content (i.e., VM image) is first copied
from the source physical machine to the destination host (i.e.,
VM image copy phase ). Subsequently, the iterative pre-copy
phase is started. During the first iteration of this phase, all
memory pages are copied to the new VM. As memory content
can change during the transfer, the subsequent iterations will
only copy the changed memory pages (called dirty pages) to
the target machine. The dirty pages are continuously copied
until their number becomes relatively small, or a certain
number of iterations is reached. This marks the start of the next
phase, called the stop-and-copy phase, where the source VM
is suspended, and the dirty pages are copied to the destination.
Then, the new VM at the destination host takes over while the
source VM is destroyed. It is worth noting that the VM is not
available only during the stop-and-copy phase.
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Mann et al. provide a mathematical model for live migration
in VMware vMotion and KVM [15], [16]. They compute the
total migration time using the following parameters: the VM
image size denoted by W (MB), the VM memory size M
(MB), the VM page dirty rate R (MBps), and the amount of
bandwidth used for migrating the VM denoted by L MBps,
the expected duration for the stop-copy phase denoted by T’
(seconds), and amount of memory transferred in each pre-copy
round denoted by X (MB). The duration of the image-copy
phase can be written as:
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The total migration time can be given by the sum of the
durations of theses phases (i.e., T; + T, ). The downtime for
a VM is given by Ts.

IIT. MOTIVATION

In this section, we provide a motivating example to show the
impact of migration sequence planning on the total migration
time, VDC downtime, and VM downtime.

In this example, we consider a network consisting of four
servers (P1, P2, P3, and P4), two top-of-rack switches, and two
aggregation switches (Fig. 2(a)). Each server has 16 cores, 32
GB of memory, and 1 TB of disk and is connected to a top-of-
rack switch with a 1-Gbps link. Switches are inter-connected
via 10-Gbps links. The resulting topology is a typical tree
topology as shown in Fig. 2(a).

We assume two VDCs are embedded in the considered data
center (Fig. 3(a) and Fig. 3(b)). VDC 1 contains five VMs
and six virtual links, whereas VDC 2 contains five VMs and
four virtual links. Fig. 3(a) and Fig. 3(b) respectively show the
virtual topologies of VDC 1 and VDC 2, as well as resource
requirements of each of their VMs (i.e., CPU, memory, and
image size) and virtual links (i.e., bandwidth).

Fig. 2(a) and Fig. 2(b) show two possible resource map-
pings of these VDCs onto the physical topology. For instance,



Fig. 2(a) shows the following mapping for VDC 1: the VMs
Vil and V3! are embedded in P1, V3! and V}' are embedded
in P4 and V3! in P3. The virtual links (Vi!, Vi), (V3', Vb,
(Vyt, V) and (V4!, Vi!) are mapped onto the paths (P1, S1,
S4, S2, P4), (P1, S1, S4, S2, P4), (P4, S2, P3) and (P1, SI,
S4, S2, P3), repectively. Finally, the virtual links (V;!, V3') and
(V4, V1) are embedded within the physical machines P1 and
P4, respectively. The figures also show the residual bandwidth
(denoted by b) for each physical link i.e., the bandwidth
available after embedding the virtual links.

Our objective is to devise a sequence of migrations to
move VMs from the initial mapping (Fig. 2(a)) to the final
one (Fig. 2(b)) with minimal migration time, VM and VDC
downtime.

Two possible migration sequences are shown in Fig. 4(a)
and Fig. 4(b). In each figure, the bottom line represents time
in seconds and the top bounded lines represent start, duration,
and end of a VM migration. The name of the VMs are shown
on the left side. For instance, in the first sequence ( Fig. 4(a)),
two migrations are triggered at time 0: (i) VM V;? is migrated
from P1 to P3, and (ii) VM V52 is migrated from P3 to P4.
The first migration takes 10 seconds and the second one takes
60 seconds. When VM V12 is migrated from P1 to P3, its
associated virtual links are removed from P1 and re-embedded
at P3. Hence, the residual bandwidth in links changes after
each step in the sequence. Subsequently, V37 is migrated from
P3 to P1 using the available residual bandwidth. Migrations
are executed according to the provided sequence until the final
mapping is reached.

For the first sequence in Fig. 4(a), the total migration time
is 220 seconds, and for the second one in Fig. 4(b), the total
migration time is 165 seconds. The average VM downtime
(i.e., average duration of the stop-copy phase) for the two
sequences are 4.14 and 3.9 seconds, respectively. The average
VDC downtime for these two sequences are 14.5 and 13.7
seconds, respectively. Here, a VDC is assumed to be down if
one of its VMs is down.

While we perform parallel migrations in both sequences, the
second sequence provides better performance as it schedules
the migrations in a way that maximize the residual bandwidth
for the subsequent migrations. For this simple example with
two VDCs and a small-scale data center, the second sequence
provides more than 25% improvement in total migration time
over the first one. As we shall show in Section VII, for larger-
scale data centers, the migration plan can have higher impact
on the performance, and our proposed solution can further
reduce total migration time by up to 35% and VM/VDC
downtime by up to 60%.

IV. RELATED WORK

VM Migration has been a central tool allowing dynamic
resource management and optimization in cloud environments.
Recently, several proposals have relied on VM migration to
manage VMs and VDCs in virtualized data centers [12], [18],
[21]. For instance, Sandpiper is a VM management scheme for
data center environments designed to avoid machine overload
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by relocating VMs [18]. Another work that also relies on
VM migration is VDC Planner [21]. VDC Planner is a
VDC management framework that leverages VM migration to
handle various usage scenarios, namely VDC embedding and
scaling up and down, and also server consolidation. In this
framework, migration is used to re-optimize the current VM
mapping in order to make room for new VDCs, or to allow
adding more VMs and virtual links to a previously embedded
VDC. However, for both frameworks, Sandpiper and VDC
Planner, the impact of migrations’ order was not studied and
VMs are moved without a prior setup of a particular plan.
The first work that considered finding optimal migration
plans is that of Hermenier et al. [11], [12]. They proposed
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Entropy, a resource manager that dynamically consolidate
workloads in data centers. Through experiments, they found
that the downtime of a migrated VM (which corresponds to
the duration of stop-and-copy phase [7], [12]) depends mainly
on the size of its memory. Based on this observation, they
developed a migration cost model that considers only the VM
memory size. Then they formulated the migration sequencing
problem as a Constraint Satisfaction Problem (CSP) that
aims at minimizing the migration cost. The solution that we
propose in this paper is different from Entropy as we aim at
minimizing the total migration time and also the downtime of
a whole VDC. Al-Haj et al. addressed also the VM migration
planning problem. However, their main focus was to ensure the
satisfaction of security, capacity, and performance constraints
during the execution of the migration plan [3]. Ghorbani
et al. proposed a heuristic algorithm to migrate virtual ma-
chines in OpenFlow-enabled networks [9], [17]. However,
their algorithm does not aim at minimizing the migration
time or service disruption time but rather, it aims at finding a
migration plan that does not introduce any inconsistent state
in the network. Lo et al. also tackled the same problem but
in the context of WAN virtualization [14]. They proposed
three algorithms for migrating multiple virtual routers with
the goal of minimizing migration time and cost. Kikuchi et
al. investigated the performance and overhead related to live
migration strategies for virtual clusters [20]. They highlighted
the scarcity of network bandwidth and stressed the need to
determine optimal migration orders in order to efficiently use
bandwidth. However, they do not provide a solution to this
problem in their work.

Unlike the aforementioned studies, our solution finds the op-
timal migration plan while considering the change in residual
bandwidth and the inter-dependence between VMs. Indeed,

when offering VDCs instead of simple VMs, the migration
of a VM involves also the migration of its associated virtual
links. Thus, the residual bandwidth changes at each step of
the migration plan, which impacts the total migration time
and service disruption time. Furthermore, our solution tries to
migrate simultaneously VMs belonging to the same VDC in
order to minimize the downtime of the service offered by the
VDCs.

V. THE VDC MIGRATION SEQUENCING PROBLEM

In this section we formally define the VDC migration
sequencing problem as an Integer Linear Program (ILP). In
our model, the physical data center network is represented
by a graph G = (N, L), where N and L denote the nodes
and links respectively in the data center network. Furthermore,
we define N = Ny U Ng, where Ny and Ng represent the
set of physical hosts and switches, respectively. The CPU,
memory and disk capacities of each physical host i € N are
denoted by C; € RT, M € RT and D; € R, respectively.
Bandwidth capacity of each physical link | € L is represented
by B; € R*. We also define s,; € {0,1} and d,; € {0,1}
to indicate whether 7 is the source and destination of each
physical link I:

s {1 if 7 € N is the source of | € L,
"L 0 otherwise.

g1 ifne N is the destination of [ € L,
"L 0 otherwise.

Let I denote the set of VDCs embedded in the data center.
Each VDC i € I is represented as a graph G* = (N, L?),
where V¢ is the set of VMs and L? is the set of virtual links
between VMs in N¢. For each VM n € N?, let Cfl e R,
M € RT and D!, € R represent the CPU, memory and disk



(i.e., image size) requirements, respectively. R, represents the
average page dirty rate for n. For each virtual link [ € L, let
Bi € RT denote the bandwidth requirement of virtual link
and Cl € R* represent the amount of physical link [ € L
bandw1dth allocated to virtual link [ € L*. Furthermore, the
source and destination of each virtual link [ is specified by the
following variables:

g _J 1 ifne N is the source of [ € L,
71 0 otherwise.
; [ 1 ifne€ N'is the destination of [ € L,
71 0 otherwise.

The mapping between the VMs in VDC ¢ and the physical
hosts in N at time ¢ is represented by the following binary
variable:

& [ 1 ifné€ N'is embedded in 7 € Ny at time ¢,
Ynn =1 0 otherwise.

To capture the system state during the migration sequence,
we adopt a discrete time model where time is divided into
intervals of fixed length. A new migration can start at the
beginning of a time interval. Even though in practice the
VM migration may happen at any given time, we choose to
adopt the discrete time model mainly due to its simplicity.
Furthermore, this discrete time model can be arbitrarily close
to the continuous time model as the interval length becomes
infinitely small. Let [0, T'| denote the time interval in which the
migrations take place, where 7" is maximum time allowed for
the migration sequence. The mapping of all embedded VDCs
at a particular time ¢ is then captured by the multi-dimensional
matrix (y}iltﬁ)iel,neNi,ﬁeN-

In the VDC migration sequencing problem, the initial and
final placement of VMs, (i.e., (y'%)inn and (yiL);n.n at
time 0 and 7', respectively), are provided as inputs. Our goal
is to find a sequence of states (y%%)inn, 0 < t < T such
that system gradually transits from the initial state (y'%); .
t0 (Y )in,nt

iT

(yioﬁ)ivn/ﬁ - (y:“blﬁ)lnﬁ - (y:fﬁ)%’”ﬁ .7 (ynn)l n,n:

This is achieved by scheduling migrations at appropriate
times. Define z},. € {0,1} as a variable that indicates whether
n is to be migrated from p to ¢ at ¢:

1 if n € N' is scheduled to migrate from p to q
at time ¢
0 otherwise.

As a migration may take several periods to complete, to
account for migration time, we define X/’- € {0,1} as a
variable that indicates whether n is under migration during

time period t:

it _ 1 if n is migrating from p to ¢ during period ¢
nPqd ) (0 otherwise.

To ensure that znpq triggers the migration, and only a single

migration can take place for a single VM n, we must have the

following constraints:

Xt >t VielneN pgeNg,0<t<T (5
X <1, Viel,neN 5, Ny, 0<t<T (6)
GeN

Let bj,tpq € R represent the bandwidth allocated for migration

of n from p to g at time ¢, and let 7/};, € RT denote the size
of the remaining content to be copied from p to g for VM n
at the beginning of time ¢. The following constraint states that
when migration starts, the total content to be copied is M,
(e.g., the memory and image size of the VM):

Ppg = npgMi, Vi € Ln € N'.5,g € Np,0<t < T (7)

Furthermore, unless Ty ﬁf becomes negative, when time

period t 4 1 starts, 7**_ should be reduced by b

npq npq-: :

i(t+1 i 7 3
Tn(pq ' > vapq - brquXntpq’
VieI,ne N.p,ge Ng,0<t<T—1 (8)

We also want to ensure that migration must continue (i.e.,

Xfl(z-f; D= 1) at time ¢ 4 1 if the remaining content after time
t is positive:
i(t+1) it t i
Xopa 2 (hipg = Viipg Xoipg) [ M

VielIneN.p,ge Ng,0<t<T—1 (9)

When migration of VM n is being carried out, VM n must be
present in both the source and destination machines p and §:

yis > XJb. VieILne N'.p,ge Ng,0<t<T (10)
Yo > X)be VieILne N'.p,ge Ng,0<t<T (11)

Furthermore, the total resource used by the VMs running in
physical host 7 must satisfy its capacity constraints for both
CPU, memory and disk:

I
YD ynaCi < Ca,

Vt,n € Ny (12)
i=1 neNt
Z >y M, < M, Vi, i € Ny (13)
i=1 neNt
I
>N yilDi < Dy, Vt, i€ Ny (14)
i=1 neNt

In addition, let v;;; € {0,1} indicates whether the migration
path from p to ¢ includes [. The following constraint states
that the total bandwidth used by VDCs for migration must

respect the link capacity constraint of each link [ € L:

Z Z &+ Z Zbﬁfm pal < Brsap, Vi, 1 €

i=1 neN?



We also require the flow constraint which states that the total
incoming bandwidth should be equal to the total outgoing
bandwidth for every node 7 along a virtual link [, unless
n is either the source node (in which case the net outgoing
bandwidth is positive) or the destination node (in which case
the net outgoing bandwidth is negative) of [:

—it it it #it it i it i
§ :Sﬁf 17 § :dﬁ[ i - § ynﬁ,SnZBl - E Ynn nlBl
leL leL neN? neN¢

Viel,t,h € N,le L (16)

We must also ensure that at any given moment, every VM
must be embedded in at least one physical machine:

yna > 1

; Viel,ne N,Gge Ng,0<t<T

a7

To capture our objective of minimizing total migration time,
let w' € {0,1} represent whether migration occurs at time
t. To ensure that migration sequence will be carried out
continuously without idle periods, the following constraints
must be satisfied:

w'>X/b. VielneN'.p,ge NO<St<T (18)
wh > wttt VO<t<T—1 (19)

Finally, let P! € R™ represent the penalty for migrating
a VM n in single time period. Thus, the overall objective
is to minimize the total migration time and service penalty
due to migration. Let § € R* denote the weight factor for
normalizing the two objectives, the goal of the VDC migration
sequencing problem can be stated as follows:

T I
min <Z w' + (52 Z XitPTi)
t=0 i=1 neNi
subject to constraints (5)-(19). This problem is N P-hard
to solve because even without CPU and memory capacity
constraints, the problem generalizes the data migration prob-
lem [8], which is known to be A/P-hard.

(20)

VI. SEQUENCER (CQNCR)

In this section, we present CQNCR, our heuristic solution to
the VM migration sequencing problem. Given an initial and
a target resource allocation, the goal of this algorithm is to
find a sequence of VM moves that translates the initial VM
embedding to the target one. Before going into the details
of the proposed heuristic, we first present various design
alternatives that can be considered, and also the rationale
behind our design choices.

A. Design Rationale

The goal of the proposed solution is to find a migration
sequence that minimizes the total migration and service dis-
ruption times as captured by the objective function (Eq. 20).
To achieve this goal, the following sights can be used to guide
the algorithm to determine an efficient migration plan:

« Start by migrating VMs whose new placement will result
in the increase of the residual bandwidth, and thereby

ensure that subsequent migrations are performed faster,
which reduces also VM downtime.

o Migrate first VMs incurring the least migration time.

o Avoid concurrently transferring VMs to and from the
same physical machine in order to reduce the processing
overhead introduced by migration. In other words, one
physical machine is either receiving or sending one and
only one VM at a particular point of time.

e When concurrently transferring VMs, avoid using paths
sharing the same links in order to inhibit network con-
gestion due to migration.

Based on these guidelines, we designed our heuristic solu-
tion as detailed in the following subsection.

B. Heuristic Solution

Our heuristic solution is described in Algorithm 1. Given
the initial (3..) and target (y..) mapping, Algorithm 1 returns
a set of tuples S, containing the migration start time, VM
to migrate, source and destination physical hosts, and the
migration path.

The main idea of the algorithm is to divide VMs to be
migrated into Resource Independent Groups (RIGs). Each RIG
contains a set of VMs that can be migrated through disjoint
paths and between distinct machines. Then VMs of each RIG
are migrated simultaneously. RIG migrations are triggered
sequentially starting by the RIGs that have shorter migration
time and willing to free up more residual bandwidth for later
migrations.

In line 1 of Algorithm 1, the set representing the migration
sequence is initialized. The current time for scheduling a
migration is represented by ¢. In line 3, the set 1} contains
the VMs that need to be migrated. This set can be computed
based on the current and the targeted resource allocations, i.e.,
(y:zoﬁ)iel,neNi,ﬁeN and (y:L:%)iEI,nEN,-,ﬁEN'

The first step is to create the RIGs (line 6). First we create
the set V; containing the list of VMs that can be migrated
at time ¢. Indeed, in some cases, it is not possible to directly
migrate some of the VMs because the target machines at the
current time may not have enough resources to host them.
However, as both the initial and final resource configurations
provided as inputs are supposed to be feasible, some VMs
will be eventually moved from the target machine and thereby
resources will be freed. In this case, the migrations that are
not possible at the current time will be triggered subsequently.
In order to create the RIGs, we first parse all the VMs in V.
For each v € V¢, we check if it is possible to include it in
one of the existing RIGs (RIG j is denoted by G;), otherwise
a new RIG is created to contain v. A VM wv is included in
an existing group G if (1) its source and destination are not
the same as any of the VMs belonging to G, and (2) it is
possible to migrate v using a path that does not share any link
with other paths used to migrate the VMs belonging to G .

In the second step, one of the RIGs is chosen to be
migrated (denoted by G+) at time ¢ such that the following
costs are minimized:



Algorithm 1 Heuristic algorithm for migration sequencing

Require: Initial mapping, (y2%)icrnen, nen
Require: Target mapping, (Y, )icr nen: neN
Output: Migration sequence, S,

1Sy« 0

2: t < 0 {t represents the start time for migrations}

3: V; < Set of VMs to be migrated

4: while V; # () do

5: V< Set of VMs that can be migrated at time ¢
6:  {Creating RIGs}
7:
8

J <1 {J: number of RIGs}
for each VM v € V; do

9: new_group < true

10: for j =1to J do

11 if v can be included in G; then
12: Gj < G U{v}

13: new_group < false
14: end if

15: end for

16: if new_group = true then
17: J—J+1

18: Gy + {v}

19: end if

20:  end for

21:  {Selecting a RIG to be migrated at time ¢}
22:  min_cost < oo

23:  for j =1to J do

24: cost < Cp(G;) {Cost of migrating G, (Eq. 22)}
25: if cost < min_cost then

26: min_cost < cost

27: J* < j {G,~ is selected}

28: end if

29:  end for

30 Sg+ Sq U{<t,Gj- >}
3. Vi« Vi\ Gy

320t t+Cw(Gj-)

33: end while

34: return Migration Sequence S,

— Migration time: The migration time (Cjs) for a group
G is computed as follows:

Cu(Gy) = max migration_time(v)
J

where the migration time is calculated based on Equations (1)
and (2).

— Waiting time: After selecting G; to be migrated at
time ¢, the scheduler has to wait for some time before
starting the migration of the next group of VMs. We
call this time the waiting time for the group G; denoted
by C,(G;). The idea is to start the migration of some
VMs belonging to the subsequent RIG as soon as possible if
they do not share any resources with the VMs being migrated.

— Impact on other RIGSs’ migration time: If we select
to migrate G; at time ¢, this operation will have an impact
on the migration time of the other RIGs. The impact can be
either positive (i.e., decrease migration time) or negative (i.e.,
increase migration time) based on the new residual bandwidth.

This cost is computed as follows:

Cr(G)= Y Cu(Gi/G)) —Cu(Gy)
ke{l...J}\Jj

2y

where Cps(Gj/G,) is the migration time of the group G
knowing that the migration of the group G; has already been
scheduled. This cost represents the expected gain or loss in
migration time of the subsequent groups if G; is scheduled
first.

The total migration cost for RIG G is a weighted sum of
the above mentioned costs. It can be written as follows:

Cr(Gj) = aCu(Gy) + BCw (G) +~Cr(G)

where a, f3, and « are weights used to adjust the influence of
each component. Note that all these costs have the same unit
(seconds).

The RIG that minimizes the total cost, denoted by G-, is
selected to be migrated (line 27). The VMs of the group G-
are then added to the migration sequence and removed from
Vi (line 31). The time ¢ is increased by the amount of waiting
time for G« (line 32). The process is repeated until there are
no VMs to be migrated (i.e., V; = 0).

Finally, we analyze the running time of our algorithm. The
grouping of VMs into RIGs (Line 8-20) requires O(|V}])
time to complete. The greedy migration sequence generation
process (Line 22-32) takes at most |V;| rounds to complete.
Each round runs in O(]V;|) time as it requires recomputing
the migration cost of every remaining RIG and selecing the
RIG with lowest cost for migration (Line 23-29). Thus, the
total running time of the algorithm is O(|V;]?).

(22)

VII. EVALUATION

We evaluate the performance of CQNCR through exten-
sive simulation. We generated four different VM deployment
scenarios (Table I). For each scenario, VDCs, VMs and
virtual links are generated. Their initial mapping is generated
randomly whereas the target mapping is generated by consoli-
dating VMs and virtual links as compactly as possible. In order
to reach the target mapping, migration sequences are generated
using two different algorithms: a baseline approach, and (ii)
our proposed solution (referred to as CQNCR hereafter). We
compare and contrast the obtained results to demonstrate the
effectiveness of CQNCR.

In the following, we first describe the simulation setup and
the deployment scenarios. We then present the metrics used
to evaluate performance. Finally, we provide the comparison
results between CQNCR and the baseline.

A. Simulation Setup

In our experiments, we simulate a data center with 1024
servers and 256 switches, connected according to a tree
topology [5]. Each physical machine is configured with 16
CPU cores and 64 GB of memory and connected to a top-of-
rack switch with 1 Gbps bidirectional link.

We perform simulations for the four different scenarios. For
each scenario, table Table I shows the number of VDCs, VMs,



TABLE I
DEPLOYMENT SCENARIOS

. e Initial mappin,; Target mappin . .
Scenarios | # of VDCs | # of VMs | # of Vir. Links Active p?Act%ve Activeg pgctigve # of Migrations
Phy. Hosts | Phy. Links || Phy. Hosts | Phy. Links
S—1 3 13 14 13 57 3 10 13
S—2 10 95 72 95 307 14 30 95
S—-3 50 488 183 485 1483 75 194 486
S—4 100 1045 360 935 2668 150 390 998
TABLE II

VM INSTANCES

EC2 Instance Type | vCPU | Memory (GB)
m3.xlarge 4 15
m3.2xlarge 8 30
ml.small 11 1.7
ml.medium 1 3.75
ml.large 2 7.5
ml.xlarge 4 15
c3.large 2 3.75
c3.xlarge 4 7
c3.2xlarge 8 15
c3.4xlarge 16 30
cl.medium 2 1.7
cl.xlarge 8 7
g2.2xlarge 8 15
cgl.4xlarge 16 22.5
m?2.xlarge 2 17.1

virtual links, and migrations as well as the number of active
physical machines (i.e., hosting at least one VM) and active
physical links (i.e., used to embed at least one virtual link) for
the initial and target mappings. The initial mapping is gener-
ated by randomly embedding VMs in the physical machines.
The target mapping is generated by consolidating VMs of the
same VDC as compactly as possible while minimizing the
number of active servers and links. For instance, in scenario
S — 1, we consider 3 VDCs consisting of 13 VMs and 14
virtual links. In the initial mapping, 13 physical machines and
57 physical links are active. After the VM consolidation, only
3 physical hosts and 10 physical links are used. To reach
the final mapping 13 migrations are required. In the other
scenarios S — 2, S — 3, S — 4, we consider a larger number of
VDCs, VMs and virtual links, which leads to a higher number
of migrations.

The requirements of VMs in terms of number of virtual
CPUs (vCPUs) and memory size are selected from the Ama-
zon EC2 instance specifications [2] as shown in Table II. The
bandwidth of the virtual links are selected randomly between
250 and 750 Mbps. The image size of a VM depends on the
deployed OS and applications. Hence, the image size of each
VM is selected randomly between 1 GB to 100 GB. All our
simulations are conducted on a machine with dual quad-core
2.4 GHz Intel Xeon E5620 processors and 12-GB of RAM.

Given a particular migration sequence, and the initial and
final mappings, the simulator computes total migration time,
average VDC downtime, and average VM downtime.

B. The Baseline Algorithm

We compare the performance of CQNCR with that of a
baseline algorithm that performs parallel migrations at each
time step while greedily decide the order of migrations.
Specifically, this baseline algorithm starts by identifying the
VMs that can be directly migrated. This means that (i) the
destination machines have sufficient resources to host these
VMs, and (ii) there is enough bandwidth to embed all virtual
links connected to them. The algorithm uses disjoint paths to
migrate in parallel the VMs with the shortest migration time.
Next, it re-embeds the virtual links connected to the migrated
VMs and updates the residual bandwidth of the physical links.
This process is repeated until all VMs are migrated.

C. Results

For each considered scenario, we evaluate three perfor-
mance metrics:

o Total migration time: the total time to perform all VM
migrations according to the migration plan.

o VM downtime: the duration of downtime incurred when
the VM is migrated. This time corresponds to the duration
of the stop-copy phase (Eq. 3).

e VDC downtime: the downtime of a VDC is the time span
within which at least one of its VMs is down.

In our simulations, we set all the weighting factors in the
total migration cost ( Eq. 22) to 1 (ie., a =B =~v=1).

Fig. 5(a) reports the total migration time for the four
considered scenarios. As we can see, in all scenarios CQNCR
outperforms the baseline algorithm by a large margin. For
scenario S — 1, the baseline algorithm takes 465.5 seconds to
migrate the VMs, whereas CQNCR takes only 327.73 seconds,
which is around 30% improvement. In case of scenario S — 2,
all VMs are migrated within 814.6 seconds using the baseline
and 533.28 seconds using CQNCR. Hence, CQNCR achieves
around 35% improvement. Similarly, for scenarios S — 3 and
S — 4 where the number of migrations is large (486 and 998,
respectively), the improvement in total migration time is also
around 36%.

The average downtime per VM is reported in Fig. 5(b).
For the baseline algorithm, the average VM downtime for the
four scenarios are 12.05, 16.24, 18.29, and 16.78 seconds,
respectively. For CQNCR the downtimes are 6.9, 7.38, 7.25,
and 7.78 seconds, respectively. Hence, in general, CQNCR
reduces VM downtimes by up to 60%. Indeed, CQNCR
ensures that the VMs are migrated at higher bandwidth and
hence can significantly reduce the downtime.
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Fig. 5.

Finally, Fig. 5(c) shows the average downtime per VDC.
In scenario S — 1, using the baseline algorithm, the VDC
downtime is around 52 seconds, whereas it is around 29
seconds using CQNCR. It is clear from the figure that, for
all scenarios, CQNCR reduces the downtime by up to 60%.

CQNCR performs significantly better than the baseline
algorithm as it always groups together a collection of VM
migrations (with the shortest combined migration time) that
do not share any resources and performs these migrations
in parallel. The second factor that allows CQNCR to further
reduce the total migration time is the fact that it starts by
selecting the VMs whose migration reduces the migration time
of the subsequent groups as described in Section VI.

VIII. CONCLUSION

VM migrations are frequently used to optimize resource
allocations and achieve several performance objectives in
today’s cloud environments. In this context, determining the
optimal VM migration sequence is an important problem as
it has a direct impact on both resource efficiency (in terms
resources used for migration) and application performance
(in terms of service downtime). In this paper, we presented
an effective technique (called CQNCR) for determining the
execution order of massive VM migrations within data centers.
In particular, given an initial and a target resource allocation,
CQNCR allows to find an efficient migration plan that min-
imizes the total migration time, the average individual VM
downtime and the average VDC downtime. Simulation results
show that, compared to the baseline, CQNCR improves total
migration time by up to 35% and VM/VDC downtime by up
to 60%.
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