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Abstract—This work falls in the area of collaborative malware
detection systems which rely on expertise and knowledge from
multiple different antivirus software for malware detection. A
critical component of such systems is the collaborative mal-
ware detection decision process. In this paper, we propose a
novel decision model, RevMatch, where collaborative malware
decisions are made based on labeled malware detection history
from participating antiviruses. We evaluate our proposal using
real-world malware data sets and demonstrate that collaborative
malware detection techniques can improve the malware detection
accuracy compared to using a single albeit the best antivirus.
Moreover, we demonstrate how RevMatch outperforms all other
existing collaborative decision models in terms of detection
accuracy while being computationally efficient and robust against
various malicious insider attacks.

I. INTRODUCTION

Malware has become more sophisticated and evasive. Mil-
lions of new malware instances appear every year [10] and it
has been growing at an exponential rate. Malware is used to
not only harvest private information from compromised hosts,
but also to organize such hosts to form Botnets. Many million-
node Botnets have been discovered in the past few years, such
as BredoLab [2] and Conficker [5]. Bots can be used to attack
other hosts in Distributed-Denial-of-Services (DDoS) attacks.
A recent well-known DDoS incident occurred in late 2012,
where a series of DDoS attacks was launched against the
American financial services sector, which led to damages of
$30,000 each minute when their services were down [3]. A
recent DDoS attack in March 2013 targeting the largest spam
filtering system, Spamhaus, generated traffic of 300Gbps and
slowed the Internet down globally for one week.

To protect computers against malware, antivirus systems
(AVs) are used to detect, block, and remove malware from
hosts. Two typical metrics are used to measure the quality of
an AV: the true positive rate (TP) and the false positive rate
(FP). The former means an AV raises an alarm when there is
a real threat; while the latter means an AV raises a false alarm
for benign software. The goal of an AV is to maximize the
TP while minimizing the FP.

The most common technique to detect malware is signature-
based detection, which involves searching for known mali-
cious patterns within suspicious files. Signature-based detec-

tion performs fast and usually has a low FP. However, it may
not be able to detect new threats, e.g., zero-day attacks. To
mitigate such limitation, behaviour-based detection [11], [15],
heuristics-based detection [14], [16] and reputation-based
detection [1] are employed to improve malware detection
efficiency. The behaviour-based approach analyzes behaviour
log or graph of a suspicious file, such as a sequence of sys-
tem calls, and matches them with known malware behaviour
patterns. The heuristic approach analyzes malware and seeks
similar patterns with known malware. The reputation-based
approach evaluates the reputation of each file based on several
attributes, such as file publisher, popularity, age, and reputation
of host machines [8]. All three approaches are considered as
a promising direction to detect new threats; however, heuristic
matching without sufficient evidences of maliciousness can
cause a high FP.

Although the primary goal of an AV is to detect and remove
malware, it is equally important that malware detection system
is able to correctly classify benign files. AVs with low TP
may not effectively protect hosts from malware, while the
consequences of false positives can be disastrous. For example,
in 2010, a security vendor released a flawed signature database
update which removed a critical system file from Windows XP
machines, causing the affected machines to be unable to boot
up afterward. [4]. In a similar instance, TrendMicro spent $8
million reimbursing customers for reparation expenses [6].

An AV vendor who may be effective in detecting one
type of malware may be ineffective at detecting other types
of malware. Additionally, an AV vendor may fail to obtain
samples of zero-day malware in time for analysis and thus
fail to protect their customers. However, if diverse AV vendors
collaborate with each other, by providing feedback about
suspicious files or activities, they may achieve better malware
detection accuracy and in turn better satisfy their customers.
A collaborative malware detection system (CMD) allows an-
tivirus systems to use collective knowledge and expertise from
each other for malware detection. Several similar systems
have been proposed in the literature, including CloudAV [19],
RAVE [20], and CIDN [12].

A key component for a CMD is the collaborative mal-
ware detection, where the decision of a suspicious file be-



ing benign or malicious is based on opinions from multi-
ple AVs. Existing models adopted in CMDs include static
threshold [19], weighted average [12], decision tree [9], and
Bayesian model [13]. However, no work has been done to
evaluate and compare their performances against real malware
data.

In this work, we propose a novel collaborative decision
model named RevMatch, where the final malware decision
is made based on querying history with the same feedback
combination. When such a match is not found or the number
of matches is too small for a confident decision, then partial
matching is sought instead. Our evaluation results, based on
real-world malware data sets, demonstrate that our algorithm
effectively improves detection accuracy compared to other
decision algorithms in the literature, while it also performs
well in term of runtime efficiency and is robust to malicious
insiders.

This paper is organized as follows: Section II discusses
some existing collaborative malware detection systems and
collaborative malware/intrusion detection decision methods.
The detailed design of the collaborative decision model is
described in Section III. We present the evaluation results in
Section IV and further discuss the results in Section V. Finally,
we conclude this paper in Section VI

II. RELATED WORK
A. Collaborative malware detection

Using a collaborative approach for malware detection was
previously discussed in the literature. Oberheide et.al. pro-
posed CloudAYV, a system [19] where end hosts send suspicious
files to a central cloud-based antivirus service for scanning by
a number of different AVs. A threshold approach is used to
aggregate feedback from multiple AVs. An implementation of
CloudAV is described in [18]. RAVE [20] is another central-
ized collaborative malware scanning system where emails are
sent to several agents for malware scanning. A simple voting
based mechanism is employed to make final decisions.

Peer-to-peer communication overlay is also used for col-
laborative malware detection [17], [7], [12]. Decentralized
network architectures allow participants to share workload
with others and thus avoid bottlenecks and single points of
failure which are common weaknesses of centralized systems.

B. Decision models for collaborative malware detection

Several collaborative decision models for malware/intrusion
detection have been proposed in the literature. Here we discuss
a few that have been proposed for CMDs.

1) Static Threshold: The static threshold (ST) model [19]
raises an alarm if the total number of malware diagnosis in
the result set is higher than a defined threshold. This model is
straight forward and easy to implement. The tunable threshold
can be used to decide the sensitivity in malware detection.
However, the ST model considers the quality of all AVs
equally, making the system vulnerable to attacks by colluded
malicious insiders.

2) Weighted Average: The weighted average (WA)
model [12] takes the weighted average of all feedback from
AVs. If the weighted average is larger than the threshold, then
the system raises an alarm. The weight of each AV can be
the trust value or quality score of the AV. The impact from
high-quality AVs is larger than from low-quality AVs. The WA
model also provides a tuneable threshold for the sensitivity of
detection.

3) Decision Tree: The decision tree (DT) model [9] uses a
machine-learning approach to produce a decision tree, in order
to maximize decision accuracy. The decision tree approach
can provide a fast, accurate, and easy-to-implement solution
to the collaborative malware detection problem. The training
data with labeled samples is used to generate a binary tree and
decisions are made based upon the tree. However, the decision
tree approach does not work well with partial feedback, i.e.,
when not all participants give feedback. It is also not flexible
(no easy way to tune the sensitivity of detection) since decision
trees are usually precomputed.

4) Bayesian Decision: The Bayesian decision (BD)
model [13] is another approach for feedback aggregation in
intrusion detection (or malware detection). In this approach,
the conditional probability of malware/goodware given a set of
feedback is computed using Bayes’ theorem and the decision
with the least risk cost is always chosen. The BD model is
based on the assumption that feedbacks from collaborators are
independent, which is usually not the case.

III. COLLABORATIVE DECISION MODEL

In a CMD, a collaborative malware detection decision model
based on feedback is key to obtaining high detection accuracy.
Efficiency (malware detection accuracy) is the primary goal of
a decision model for CMD. Robustness is also important since
adversaries have strong motivation to evade or compromise the
system. However, robustness is not discussed in most machine-
learning approaches. In this paper, we propose an efficient and
robust collaborative decision model named RevMatch, which
can make accurate collaborative malware detection decisions
based on the feedback from neighbors, and which is also
robust to malicious insider attacks. In this section, we first
formulate the collaborative decision problem and then describe
our solution.

A. Problem Statement and RevMatch Model

We formulate the decision problem we are solving in this
paper as follows:

Given a labeled history consisting of the feedback of n
AVs on m files whose ground truth are known (malware or
goodware), we decide whether a suspicious file is malware
based on the feedback set 'y from a subset of the AVs.

To solve this problem, we model the decision problem
as follows. Suppose a scenario where a set of AVs A are
consulting each other for malware assessment. AV; (i € N)
sends a suspicious file to other AVs in its neighbor list
N for consultation. Let random variable Y; := [Yj]jecn,
denote the feedback vector that contains the scanning results



from the neighbors. Note that Y; € {0,1}, and ¥; = 1
and Y; = O indicate the suspicious file is a malware or
goodware respectively'. Suppose AV; sends a suspicious file
to its neighbors for consultation and receives a feedback set
Yy = {¥1,--,¥|n;|} from its neighbors, where y; € {0,1} is
the feedback from neighbor j. AV, needs to decide whether
the suspicious file is malware or not, based on the feedback
y.

We model the above decision problem as a utility optimiza-
tion problem. Let random variable X € {0,1} denote the
outcomes of “goodware” and “malware”. Let P/ (y) denote
the probability of being “malware” given the feedbacks y from
all neighbor AVs. P (y) can be written as Py, (y) = P[X =
1Y = y|. Let Cf, and Cy, denote the average cost of a
FP decision and a FN decision. We assume that there is no
cost when a correct decision is made. We define a decision
function d(y) € {0, 1}, where § = 1 means raising a malware
alarm and 6 = 0 means no alarm. The risk of decision R(¢)
can be written as:

R(8) = CrnPu(y)(1 = 6) + Cpp(1 = Pu(y))d
= (Csp = (Crp + Cpn)Pu(y))d + CpaPur(y)
To minimize the risk R(J), we need to minimize (Cy, —
(Ctp + Crn)Pr(y))d. Therefore, the AV raises malware
alarm (i.e., 6 = 1) if
>__ G
~ Cip+Cin

To make the optimal decision, the key step is to estimate
P (y). Our proposed solution (RevMatch) is to search in the
labeled history for records which have the same feedback set
as y. Let M(y) and G(y) denote the number of malware and
goodware in the labeled records with matching feedback set
y. If the number of observed matching records in history is
larger than a threshold, i.e., M(y) + G(y) > 7. > 0, then
P (y) can be estimated using

Pu(y) o))

_PIY =y|X = JP[X = 1]
- PY =y]
PlY = y|X = 1]P[X = 1]

Pu(y) =PX =1Y =y]

P[Y = y|X = 1]P[X = 1] + P[Y = y|X = 0]P[X = 0]
PlY =y|X =1Pum
P[Y = y|X = 1]Px + P[Y = y|X = 0]P¢
1 1
T Y=y X=0pg G(y)MPg @
tRv=yix=py LT amery

where P[Y = y|X = 1] is the probability that a feedback
set y is received when the file is malware; P[Y = y|X = 0]
is the probability that diagnosis y is received when the file
is goodware. P, is the prior probability of malware; Pg is
the prior probability of goodware. M, G are the numbers of

malware and goodware samples in the labeled history.
We use a simple example in Fig. 1 to illustrate a use case
of this decision model. When AV} receives a suspicious file

'For the convenience of presentation, we drop the subscript i in the
notations appearing later in this paper.

Labeled Records for AVO

Feedback Set

Digest AVl AV2 AV3 Ground Truth

df73 1 1 1 malware

48c2 1 1 0 malware

faf 1 1 0 malware

3a4dc 1 0 0 goodware

3473 0 0 1 goodware Hist

istory

ccle 0 0 0 goodware lookup

Suspicious file

Decision

AVO

Fig. 1. An Example of the RevMatch Decision Algorithm for CMDs

s and cannot make a confident decision, it sends the file to
its neighbors AV;, AV,, AV3 for scanning. The feedback set
returned is {1, 1,0}. AVj searches its labeled records database
and finds two matches. Both matches are malware. If 7. = 2,
AVj decides that file s is malware using the decision formula
described in Eq. (2).

B. Feedback Relaxation

The previous results are based on the condition that M (y)+
G(y) > 7., where 7. > 0 is a system parameter to specify the
minimum number of matches in order to reach some “confi-
dence” in decision making using Eq. (2). In this subsection,
we discuss how to deal with the case of M(y) 4+ G(y) < 7.

M(y)+ G(y) < 7. indicates there are not enough matches
and thus no confident decision can be made. The RevMatch
model handles this problem using feedback relaxation. That
is, it ignores feedbacks from some neighbors, intending to
increase the number of matches by partial matching. The
RevMatch model chooses to ignore the feedback from the
least competent AV, since removing incompetent nodes can
effectively increase the matching cases number while keeping
valuable feedback from high quality AVs. The competence
level of an AV can be its trust value or quality score.

Alg. 1 describes the process of removing incompetent
AVs from the feedback set one by one until the number of
matching samples exceeds the threshold 7.. Then, a decision
is made based on the remaining feedback set. Upon receiving
a diagnosis set y, it first checks if the number of matching
cases in the records exceeds the threshold 7.. If it does, it
makes a decision based on the collected matches. Otherwise,
the least competent AV is removed from the feedback set in
each round until the number of matching samples exceeds the
threshold. After that, it returns the corresponding decision and
the remaining feedback set.



Algorithm 1 Relaxation(y, o)

Algorithm 2 Ground Truth Update(T, F, §)

1: //This algorithm removes feedback from the least competent AVs from
the neighbors list until the number of matches reaches the threshold 7.
It has two parameters, the feedback vector y and an ordered list of AVs
lq, which is sorted by the competence levels of AVs in ascending order.
¢ (M(y), G(y)) < find matches for y
1 if M(y) + G(y) > 7. then

. end if

. //[Feedback relaxation

. for each a in I, do
9: y < y removes feedback of AV a
10: (M(y), G(y)) < find matches for y
11:  if M(y) + G(y) > 7 then

2
3
4
5: return (y, d)
6
7
8

12: 0 < max_ R(9)
§e€{0,1}

13: return (y, d)

14: end if

15: end for

C. Labeled History Update

The labeled history (ground truth set) is highly important
since all decisions are based on the ground truth (GT) search
for matches. AVs in CMD may collect labeled history by
sending test files to neighbors and recording their feedbacks
and GT. Real consultation files can also be used when their
GT are revealed afterward.

The GT set T is a collection of feedback records labeled
with their GT (malware or goodware) as shown in Fig. 1. To
increase storage efficiency, a GT entry T; can be represented
with attributes {F;, a;, b;, t; }. F; is the binary set representing
the feedbacks from neighbors, a; and b; are the number of
malware and goodware in history with feedback F;. t; is
the timestamp of the last GT sample recorded with feedback
F;. The purpose of recording the timestamp is to prevent
history poison flooding attacks, where a malicious insider
(probably a malware producer) accumulates credibility quickly
by releasing a large number of zero-day malware that other
AVs may not be able to detect in the beginning, and then raises
alarms on goodware to mislead others (see Section V-F).

The labeled history update process is described in Alg. 2.
When a node has a new test file with GT g € {0,1}, it
sends the file to all collaborators for consultation and receives
feedback . Suppose there exists an entry Iy = F in the
labeled history and t; < currentTime() — At, then update
a; = aa;j + g and b; = ab; + (1 — g), and also reset t;;
otherwise if there is no entry with feedback F, then create a
new entry {Frew, Gnew, Onews tnew p- At is the minimum time
gap that two adjacent updates have the same feedback. « is
the discount factor on older data and f is the weight on priors.
P,s and P are the priors for malware and goodware.

IV. EVALUATION

In this section, we use real data to evaluate the performance
of the RevMatch model and compare it with four other
decision models, namely, ST, WA, DT, and BD (described
in Section II). The metrics we use for the evaluation include
detection accuracy, running time efficiency, and robustness

1: //This algorithm updates the ground truth set T when a new ground truth
g with scanning feedback F' arrives.

2: j <« search records in T with feedback F'

3: if 7 > 0and t; < currentTime() — At then

4: aj < aaj + g // update the number of malware

5: bj <= abj + (1 — g) // update the number of goodware

6: else if j is not found then

7: Frew = F /I create a new entry Frpew = F

8 Anew < BPM +g

9 bnew <~ BPG + (1 - 37)

0

1

10: T <= T U {Fnew; Gnew, bnew, currentTime() }

11: end if
TABLE 1
DATA SETS
Dataset  Dataset description Samples  Year Malware

D alarm rate

S1 Old malware 58,730 2008-2009 84.8%
S2 New malware 29,413 2011-2012 59.5%
S3 Hybrid malware 50,000 2009-2012 69.7%
S4 Goodware (SourceForge) 56,023 2012 0.3%
S5 Goodware (Manual) 944 2012 7.9%
S6 Hybrid Goodware 5,000 2012 1.6%

against insider attacks. We use quality score, which is the
combination of FP and FN (e.g., 1-FN-FP), to measure
detection accuracy; Running time efficiency is the average
running time for making a decision; Robustness is the level
of resistance to malicious insider attacks. We evaluate the
performance of RevMatch and compare its performance with
different collaborative decision algorithms.

A. Data sets

In order to evaluate the accuracies of the decision al-
gorithms, we collected real-world malware and goodware
samples. Our malware data sets were collected from Mal-
ware Analysis System (formerly CW-Sandbox)?, Offensive
Computing®, and other antivirus vendors. In terms of the
collection time, our malware datasets are divided into two
groups: old malware data set (S1) collected in 2008-2009 and
new malware data set (S2) collected in 2011-2012. We also
mixed the two datasets and selected 50,000 of them to form
a hybrid malware dataset (S3).

In our evaluation, we also included goodware to measure
false positive rates of the decision algorithms. We crawled
the top 10,000 projects in SourceForge* and extracted PE
(Portable Executable) binary files as goodware samples (S4).
We also collected binary files (S5) manually as false positive
samples, such as some driver files and computer games from
reputable producers from various sources. We also selected
a mixed combination of goodware samples to form a hybrid
goodware data set (S6). Table I shows the size of each data
set.

We used VirusTotal® to obtain scanning results from a vari-

Zhttps://mwanalysis.org/
3http://www.offensivecomputing.net/
“http://sourceforge.net/
Shttps://www.virustotal.com



ety of antivirus tools. Using the VirusTotal API, we uploaded
our entire malware and goodware data sets and acquired scan-
ning logs of 40 different antivirus tools. Fig. 2 shows both the
TP and FP of each antivirus engine based on hybrid datasets
S3 and S6. One caveat is that we do not intend to compare
different AV engines’ detection rates because VirusTotal is not
designed for this type of performance comparison. VirusTotal’s
scanning results are based upon command line versions of AV
engines which may not be equipped with more sophisticated
techniques, e.g., behavioural analysis. We replace the names
of AVs with indexed labels (e.g., AV;) and the full list of AVs
used in our experiments can be found in alphabetic order in
Table II.

TABLE II
ANTIVIRUSES USED FOR EVALUATION (PRESENTED IN ALPHABETICAL
ORDER)
AhnLab-V3 Comodo Jiangmin Rising
AntiVir DrWeb K7AntiVirus Sophos
Antiy-AVL Emsisoft Kaspersky SUPERAntiSpyware
Avast eSafe McAfee Symantec
AVG eTrust-Vet | Microsoft TheHacker
BitDefender Fortinet NOD32Norman | TrendMicro
ByteHero F-Prot nProtect VBA32
CAT-QuickHeal | F-Secure Panda VIPRE
ClamAV GData PCTools ViRobot
Commtouch Tkarus Prevx VirusBuster

We collected the average percentage of AVs raising malware
alarms to each dataset based on VirusTotal’s scanning results.
As expected, we noticed a higher percentage of AVs raise
malware alarms on older malware samples than newer ones
(see Table I). The cause of the difference might be that
antivirus vendors have more time to analyze and create more
accurate antivirus signatures for older malware samples.

In our setting, we used VirusTotal’s scanning results as
domain knowledge or previous observation on binary files.
Given the same amount of information about binary files, our
goal is to determine which decision algorithm i) yields the
best detection rate and ii) provides more resilience against
manipulated information.

B. Experiment Setting

We emulated a CMD composed of 40 AVs from different
vendors. The data collected in Section IV-A are partially used
for constructing labeled history for nodes in CMD. The left
data are used for testing/evaluation. In the next subsections,
we evaluate and compare the efficiency of several different
collaborative decision models.

C. Ranking of AVs

Both the WA model and RevMatch model require the
ranking of AVs. In this section, we evaluate the TP, FP, and
quality scores of AVs based on hybrid datasets S3 and S6.
Moreover, the false negative rate (FN) is the probability that
a malware is not detected and the true negative (TN) is the
probability that goodware is correctly classified as goodware.
High TP and low FP reflects high quality of malware detec-
tion. We define quality score of AV;, denoted by @;, using

True Positive
— False Positive ===
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Fig. 2.

Rate/Score

True Positive Rate and False Positive Rate of AVs

Q;,=1— (CanNi +CprPi),Vi S {1, 2, ..., n}, where Cfn
and Cf, are the penalization factors on the false negative and
false positive rates.

The FP, TP, and quality scores for all AVs are plotted in
Fig. 2, where AVs are sorted by their quality scores (Cy, =
Ctp = 1). We can see that TP and FP from different AVs vary
greatly, and high quality AVs have both high TP and low FP.
The highest quality score a single AV can achieve is 0.851.

D. Static Threshold

The static threshold (ST) model takes the total number of
AVs which raise malware alerts. If the number is larger than
a given threshold 75, then it raises a malware alarm. Le., if
>jen; Vi = Ts, where V; € {0,1} is the diagnosis result
from AV}, then it raises a malware alarm.

We implemented the ST model and plot the evaluation
results in Fig. 3. We can see that FP decreases and FN
increases when threshold 7, increases. When 7, is 0, ST
reports all files to be malware; when 7, is 40 (the total number
of AVs), ST reports all files to be goodware. The quality score
of ST reaches the highest when 75 is 5. In the rest of this
section, we set 7, = 5 unless we specify otherwise.
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Fig. 3. TP, FP, and Quality Scores of Static Threshold-based Model with

Different Thresholds (based on dataset S3, S6)

E. Weighted Average

The weighted average (WA) model takes the weighted av-
erage of the decisions from all AVs and asserts the suspicious
file to be malware when the weighted average is higher than
a threshold 7,,. In our implementation, we use the quality
scores computed in Section IV-C as the weight of all AVs.
i.e., WA only raises a malware alarm if W
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Fig. 4. TP, FP, and Quality Scores of Weighted Average Model with Different
Thresholds (based on dataset S3, S6)
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Fig. 5. The Optimal Decision Tree Generated by Weka J48 Algorithm (Top
5 levels)

where V; € {0,1}. As shown in Fig. 4, WA yields optimal
results when the threshold 7,, = 4/40. Compared to ST, WA
performs slightly better in malware detection quality. In the
rest of the evaluation, we fix 7, to 4/40 unless we specify
otherwise.

F. Decision Tree

The decision tree (DT) model uses machine learning to
produce a tree-structured predictive tool to map feedback
from different AVs to conclude that a suspicious file is a
malware or not. We used Weka®, a datamining software, as the
machine learning tool to produce decision trees for evaluation.
We chose algorithm J48 for decision tree generation based
on dataset S3 and S6. We used 10-fold cross-validation to
avoid overfitting. Fig. 5 shows the partial outcome of the final
decision tree. The entire decision tree includes 26 out of 40
AVs in the decision loop. Our results show that the DT model
achieves a high TP 0.956. However, it also has a higher FP
of 0.077, which leads to a moderate quality score of 0.879
(see Table III). We speculate the reason behind this is that
DT model focuses on reducing the overall number of false
decisions, which does not necessary produce optimal quality
score when there is large discrepancy in training data set sizes
of malware and goodware.

G. Bayesian Decision

The Bayesian decision (BD) model uses Bayes’ theorem to
calculate the conditional probability P/ (y). A malware alarm

Shttp://www.cs.waikato.ac.nz/ml/weka/

QUALITY SCORES AMONG DIFFERENT DECISION MODELS

TABLE III

Method True Positive | False Negative | False Positive | Quality Score
TP FN FP
Static Threshold 0.903 0.097 0.022 0.881
Weighted Threshold 0.908 0.092 0.025 0.883
Decision Tree 0.956 0.044 0.077 0.879
Bayesian Decision 0.871 0.129 0.013 0.858
RevMatch 0.927 0.073 0.007 0.920
Best Single AV 0.859 0.141 0.008 0.851
. . . Cip .
is raised if Py (y) > o165, - However, the BD model is

based on the assumption that all AVs are independent, which
is not the case in reality. We also implemented the BD model
and the detection accuracy is shown in Table III.

H. RevMatch

The RevMatch model (Section III) takes the feedback and
does a history records look up for decision. We implemented
RevMatch and evaluated it using 10-fold cross-validation
based on datasets S3 and S6. We fix parameters a = 1,
8 =0, and Py; = Pg = 0.5. In the first experiment, we fix
parameters C'y,, = Crp, = 1 and increase threshold 7, from 1
to 5. As shown in Fig. 6, a higher 7. leads to a slightly higher
FN and lower quality score.

In the next experiment, we fix 7. = 1 and set different
penalization weights on false negative rates C'¢,. Fig. 7 shows
that a higher Cy,, leads to a higher FP and a lower FN. We
speculate the reason is that RevMatch automatically trades FP
for a lower FN, since the penalization of FN is higher.

1. Comparison between Different Decision Models

In this experiment, we compare the quality scores of five
different decision models: ST, WA, DT, BD, and RevMatch.
The results are based on dataset S3 and S6. We used fixed
thresholds 5 for ST and 4/40 for WA. We used 10-fold
cross-validation for both DT and RevMatch models. We set
parameter 7. = 1 and Cy, = Cy,, = 1. The results are shown
in Table III. We can see that RevMatch outperforms all other
models in terms of overall quality score. Also, all collaborative
detection models have higher quality scores than the best AV.

Next, we increase C'y, from 1 to 13 and plot the quality
score of all decision models in Fig. 8. We can see that
RevMatch is superior to all others in all cases. BD performs
the worst on higher C¥,. An interesting observation is that
ST starts to perform better than WA when CYy,, is sufficiently
large. We speculate the reason is that when it is costly to
miss malware, then the system considers the opinions from
all AVs rather than focusing on some high quality AVs. Note
that in this experiment, ST and WA both re-select their optimal
decision thresholds for each C'¢,,.

J. Robustness against Insider Attacks

In an open CMD, adversaries may join the collaboration
and serve as co-operative CMD members in the beginning and
then suddenly become malicious and send false feedback. The
tasks of quickly identifying and removing malfunctioning or
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malicious insiders are the responsibilities of trust management
and acquaintance management. However, in this subsection,
we are interested in knowing the maximal impact malicious
nodes can bring to the system if such a malicious node
identification and removal mechanism does not exist. We
evaluate the impact of malicious insiders on the four decision
models by intentionally injecting attacks into the experimental
data.

In the first experiment, we start from the lowest ranking
AV and replace its feedback by a malicious one, and gradu-
ally increase the number of malicious attackers by replacing
feedback of other low quality AVs. We emulate three types of
attacks, namely, the alarmer attack, the dormant attack, and
the random attack. Attackers launching an alarmer attack al-
ways report malware whenever a scanning request is received;
attackers launching a dormant attack always report goodware
for all scanning requests; whereas in a random attack, nodes
report random decisions (either malware or goodware). Fig. 9
shows the impact of all these three different attacks on
RevMatch model with different numbers of attackers. The
alarmer attack has the highest impact and the dormant attack
is the least effective. With the alarmer attack, the quality score
drops down significantly when the number of attackers is
higher than 5.

In another experiment, we investigate the impact of alarmer
attacks on different decision methods. Fig. 10 shows that the
decision tree is the least durable to colluded alarmer attacks.

Its quality score had no change with the first two attackers,
but dropped quickly after the third attacker joined in. We
investigated the reason and found that the first two AVs were
not included in the decision tree while the third attacker AV
was. The results also show that ST can endure at most 4
attackers since the decision threshold is 5. The RevMatch,
BD, and WA models are relatively more robust to colluded
alarmer attacks. We also notice that using a higher decision
threshold 7. in RevMatch increases the resistance against
attackers while decreasing the detection quality when there
is no insider attack.

K. Acquaintance List Length and Efficiency

In the previous experiments, we showed that collaboration
can effectively improve the intrusion detection accuracy for all
participating AVs. In this experiment, we study the impact of
collaboration network size on the overall detection quality in
the network. We start with 5 AVs with the lowest ranking
and gradually increase the network size by adding more
competitive AVs until it reaches 40, and we observe the
malware detection quality score with different network sizes.
We repeat the above process by starting from the top ranking
AVs and add lower ranking ones in the second experiment, and
by adding randomly picked AVs in the third experiment. The
results (Fig.11) show that collaboration significantly improves
the detection accuracy for nodes with low detection capability
and nodes with high detection accuracy also benefit from it.



We can see that although the collaboration between the top
5 AVs already yields good results, recruiting more AVs with
lower ranking can further improve the overall accuracy. In
all cases, a network with 25 AVs can achieve high malware
detection quality. The drawback of collaborating with many
AVs is the maintenance overhead since the participating AVs
need to allocate resources to assist their collaborators. A host
should select an appropriate acquaintance list size depending
on the amount of resources it can reserve for AV collaboration.

V. DISCUSSION

In the previous section, we evaluated the performance of
our proposed RevMatch model and compared it with four
other collaborative decision models, namely, ST, WA, DT, and
BD. The criteria we use for evaluation are quality score and
resistance to insider attacks. Quality score is a combination
of FP and FN of the decisions, and the resistance to insider
attacks is the maximum number of alarmer attackers it can
endure before the quality score of the decision model drops
significantly. In this section, we discuss other criteria that may
be also important for choosing the right decision model for
CMD. They are: runtime efficiency, ability to work with partial
feedback, and tuning flexibility.

A. Runtime Efficiency on Decision

Runtime Efficiency is an important criterion since it may
not be acceptable for the system to take too long to make a
decision. We evaluate the running time of all four decision
models on a Ubuntu machine equipped with 2.13 GHz Intel
Xeon and 3X4GB RAM. The ST, WA, BD, and DT models
all take less than 1 milliseconds in processing the decision al-
gorithm. RevMatch takes less than 15 milliseconds in average
to make a decision.

B. Partial Feedback

In a CMD, some collaborators may not respond to scanning
requests all the time, especially when they are overloaded.
Therefore, it is important for AVs to be able to make effective
decisions based on the feedback from a subset of collaborators.
ST may not work effectively with partial feedback since the
fixed thresholds may be too high when the number of feedback
participants is small. DT also does not work well with partial
feedback, since it requires the inputs that can form a decision
path in the tree. WA, BD, and RevMatch can work well with
partial feedback.

C. Tuning Flexibility

Tunning flexibility allows the system administrator to tune
the sensitivity of malware detection. For example, the system
can become more or less sensitive to malware by changing a
parameter. Both ST and WA can be tuned for the sensitivity of
the system by setting their thresholds. DT, however, does not
have a parameter that can be tuned for detection sensitivity.
BD has tunning parameters C'r,, Csy,. RevMatch can be tuned
using the penalization factors (i.e., C'yp, Cyy) for sensitivity,
and 7, for the robustness of the system.

TABLE IV
PERFORMANCE SUMMARY OF COLLABORATIVE DECISION MODELS

Decision Model Decision | Runtime | Attacker Partial Flexi-

‘ Quality Runtime | Tolerance ‘ Feedback ‘ bility ‘
Static Threshold medium fast 4 attackers no yes
Weighted Average | medium fast 5+ attackers | yes yes
Decision Tree medium fast 3 attackers no no
Bayesian Decision | low fast 5+ attackers | yes yes
RevMatch high medium | 5+ attackers | yes yes

D. Comparison

Table IV provides a qualitative performance comparison of
the five collaborative decision models based on the metrics
we selected. We can see that RevMatch is superior in terms
of detection accuracy, flexibility, and ability to work with
partial feedback. It also performs well in terms of runtime
efficiency and resistance against insider attacks. Our results
can be used as a reference for decision makers regarding which
collaborative decision method to employ in their CMDs.

E. Zero-day attack Detection

In a CMD, behaviour-based malware detection techniques
might be employed by some AV vendors. Zero-day malware
can be possibly detected by some AVs who have sophisticated
behaviour analysis engines. Collaboration makes it possible for
AVs to exchange information on zero-day malware and thus
significantly benefits users of AV products who do not have
the capability to detect zero-day malware.

F. History Poison Flooding Attack

Since Revmatch uses history data for decision, adversaries
may try to poison the history data to benefit themselves.
For example, an adversary knows about a type of zero-day
malware (it may even release it), so it always identifies this
zero-day malware while the other AV engines miss it. After
that, it suddenly reports all goodware to be malware, intending
to cause its collaborators to raises a large number of false
alarms. However, Revmatch is resistant to this type of attack
since the ground truth update mechanism design prevents the
adversary from poisoning the history data quickly, by using
the minimum recording time gap At. It is difficult for the
adversary to constantly create new types of zero day malware
to boost its credit. Also, nodes in the network only consult
others when the received file is detected as suspicious by
the anomaly-based detection and a goodware usually does not
raise any concern in this case.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a decision model named
RevMatch, which makes collaborative malware detection de-
cisions based on looking up the historical records with the
same feedback set. We proposed several evaluation metrics and
compared the RevMatch model with other decision models
in the literature using real data sets. Our evaluation results
showed that RevMatch outperforms all others in terms of
detection accuracy, flexibility, and tolerance of partial feed-
backs, while achieving satisfactory running time efficiency and



robustness to insider attacks. In general, collaborative malware
detection techniques improve detection quality in comparison
to single AVs. As our future work, we plan to introduce more
sophisticated insider attacks, and devise corresponding defence
mechanisms. We also intend to further improve the efficiency
of the decision algorithm by integrating the confidence level
in detection from all participating AVs.
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