
Managing the File System from the Kernel
Shihabur Rahman Chowdhury∗, Constantin Adam∗, Frederick Wu∗, John Rofrano∗, and Raouf Boutaba†

∗IBM TJ Watson Research Center
{schowdhu | cmadam | fywu | rofrano}@us.ibm.com

† David R. Cheriton School of Computer Science, University of Waterloo
rboutaba@uwaterloo.ca

Abstract—In this paper, we investigate the benefits of adding
autonomic capabilities inside the operating system. We have
developed and implemented a solution that focuses on three
use cases (continuous file permission compliance, dynamic disk
cleanup, and accidental removal protection) for the file system,
and encapsulates all the respective file system monitoring, trou-
bleshooting and error remedial operations in a Linux kernel
module. The main benefits of this approach are the capability
to detect issues instantly when they occur, and fix these issues
transparently, with the invoking applications being unaware of
their occurrence. These capabilities are not present in external
agent architectures, including contemporary configuration man-
agement systems, like Puppet, Chef, or CFEngine. We have built
a prototype and evaluated the performance of the most resource
intensive use case, dynamic disk cleanup, using the FileBench
and Postmark file system benchmarking tools.

I. INTRODUCTION

In this paper we investigate the benefits of adding autonomic
capabilities inside the operating system. We focus initially on
making the file system self-managing. To perform our study,
we have built a kernel module that allows the applications
to express their access rights and disk usage requirements,
and that autonomically checks and enforces these constraints
on the underlying file system. The main advantage of this
design, compared to external agent based architectures (i.e.
contemporary configuration management systems, such as
CFEngine, Puppet, or Chef, and other autonomic computing
architectures, described in [1]), is its ability to detect any issues
before they occur, take immediate actions to remediate them,
and hide the occurrence of these events from the applications
interacting with the file system.

Our system exposes an API which allows the developers
to specify the disk cleanup and access rights policies for the
files used by their applications. This design is in line with the
DevOps idea of increasing efficiency and reducing the chance
of failure through collaboration between developers and IT
administrators. Before deploying applications in Production,
IT administrators will test extensively the developer specified
policies. This will reduce the chances of mis-configuration due
to the lack of knowledge of application internals. Allowing the
developers to specify the application policies will also reduce

The first author is a PhD student at David R. Cheriton School of Computer
Science, University of Waterloo (sr2chowdhury@uwaterloo.ca). This
work was submitted during his summer internship at IBM TJ Watson Research
Center

the configuration overhead of the applications once they are
deployed.

Pushing more intelligence down to the operating system
level also brings several important benefits to the management
of large data centers. It streamlines the operation of the data
center, by eliminating the need to monitor the file systems,
raise alerts, or produce a large variety of tickets that cover
issues such as adding or removing disk space, cleaning up disk,
or detecting inappropriate access rights and modifying them.
It also reduces human involvement in file system management
tasks, leading to better resource utilization, less configuration
errors, and protecting files that are essential to application
operation from accidental deletion.

Our approach is inspired by the autonomic computing
philosophy described in [2]. However, in contrast with [2],
where each managed element (including the operating system)
is monitored by an external agent (the M in the MAPE-K
autonomic loop), we seek to add the autonomic management
capabilities at the lowest possible level in a server: at the OS
level. This design aims to eliminate the agents that monitor and
manage the operating system, by including this functionality
in the OS itself. For example, instead of monitoring if an
application failed, the operating system can be instructed to
keep it running, in the same way a service can be run using
initd. A second example along these lines could be the
elimination of cron jobs to periodically back up file systems.
The operating system can be instructed to initiate backups
whenever an essential file has been changed, or whenever a
certain amount of change happens.

To further highlight the benefits of this design, consider the
following two examples. First, files come with different access
privileges. Changing these rights opens security loopholes.
Using our approach, we can prevent any non-compliant access
right change to take effect. To contrast, an external agent
architecture will detect the access rights violation after it takes
place, potentially leaving the system in a vulnerable state from
the instant when the change takes place, until the moment
when the external agent runs a new monitoring cycle, detects,
and fixes that.

Second, in the UNIX world, we usually over-provision disk
space, by carving volumes out of a larger disk, so that there
is unallocated disk space to grow the volumes. Disk volume
growth is usually a manual system administrator task. Even

more so, with hypervisors in the cloud, there is additional disk
capacity to grow volumes. Consider a process that attempts to
write a 16 GB core dump into a file system that has 2 GB
free space left. If we use an unmodified operating system and
an external monitoring agent this operation will fail, and an
error code will be returned to the application. Depending on
whether the application treats this operation as a transaction
or not, the attempted write will abort, and the partial data
written removed, or the disk will get full. Depending on the
application’s error handler, it will return an error message,
or it may even crash. This creates more problems, and work
because, in addition to understanding what went wrong, we
are also now potentially left with the tasks of cleaning up the
disk, and restarting the application. If the operating system
is equipped with the capabilities of managing the file system
by itself, it will detect the insufficient disk space before the
write occurs, and will try several remediation actions (such
as deleting or compressing files, expanding the file system,
asking for more disk space from a hypervisor). If these actions
are successful, the write operation will proceed, and the initial
insufficient disk space situation will be completely transparent
to the application. Our goal is for the OS to manage itself
in such a way that applications rarely receive ’out of space’
errors.

The rest of the paper is organized as follows. Section II
reviews related work. Section III provides an overview of
the system policies, use cases, architecture and the rationale
behind our design decisions. Section IV provides a detailed
description of the implementation. Section V provides an
evaluation of the design. Finally, we conclude and outline
future work in Section VI.

II. RELATED WORK

Different research works performed in this field looked
at adding self-managing capabilities at the operating system
level, or building autonomic storage management solutions.

Self-managing capabilities have been built into various
commercial and research operating systems. The SElf-awarE
Computing model (SEEC) [3] allows developers to collabo-
ratively create adaptive systems that understand user’s goals
and constantly monitor and re-enforce those goals. AcOS [4] is
an Operating System that proposes an autonomic framework
and demonstrates autonomic CPU allocation strategies. This
work is done in the context of intelligent resource allocation
to achieve user specified service-level objectives, while main-
taining the CPU temperature under a threshold. NTFS, starting
from Windows Server 2008 has self healing capabilities [5]:
block level errors can be detected and corrected without user
intervention. NITIX OS was the first commercially available
OS [6] that claimed to have self-* capabilities. At the file
system level, NITIX regularly performs a backup that would
allow restoring the data in case of failures. Sun’s ZFS [7] has
self healing capabilities (can automatically restore data after a
failure). It relies on a backup to restore data after some failure
occurs. BORG [8] is a system that focuses on reorganizing
the file blocks for better I/O performance. The Elastic Quotas

file system [9] gives the users the illusion of having virtually
unlimited disk space. To achieve this objective, it classifies
files in 2 categories: regular and elastic. Only the regular files
are accounted towards the quota limitation. The elastic files
are subject to removal when the disk usage goes above a
threshold, and the user exceeds his quota. The elastic files are
managed through a duplicate directory structure and shadow
users. It also provides the capability for the users to specify
policies (i.e. remove files that are older than 60 days). The
implementation is different from our work. The Elastic Quotas
file system periodically scans and takes action. Instead, we
only take action when required.

A number of research efforts have been made towards
building autonomic storage management systems, and inte-
grating them into the structure of data centers. The design and
implementation of an autonomic storage manager is presented
in [10]. It allows to specify allocation policies in terms of
capacity and performance metrics. It also automatically raises
alerts if these constraints are violated. This system performs
resource allocation, by translating high-level policies into low-
level commands, but it does not address in detail the self-
managing or self-healing properties of an autonomic system.
Nectar [11] is Microsoft’s automated data and compute man-
agement framework for data center. Old data is automatically
removed from the system and re-computation is avoided by
leveraging the old results saved in the system. In [12] authors
develop scc a storage configuration compiler for cluster ap-
plications that automates cluster configuration decisions based
on formal specifications of application behavior and hardware
properties. This compiler’s ability to configure heterogeneous,
rather than homogeneous cluster architectures, enables it to
meet the application Service Level Agreements (SLAs) while
achieving 2-4.5x cost savings. In [13] the authors propose
Polus, a framework for policy based storage management. It
removes the necessity to write codes that map the high level
QoS requirements to low level device actions. Thus, reducing
the complexity of the system administrators’ jobs. Polus allows
the SAs to express their requirements as a high level rule of
thumb specification and learns about the system’s conditions
and quantifies these specifications to specific implementations.
It also continuously monitors the system for QoS violations
and performs the necessary actions to bring the system back
to compliance.

III. SYSTEM OVERVIEW

The autonomic file system manager presented in this paper
has two major components. One component interacts with
the user-space applications to setup policies that represent
in a universal way the knowledge used to manage the file
system. The second component interacts with the file system
and implements the system behavior specified in the policies.
In the rest of this section, we describe three use cases around
which we have built our system, the policies and how they
apply to the use cases, review the system architecture, and
discuss our design choices.

A. Policies

We consider two types of policies: policies defined by
users/applications, and system-wide policies. The former as-
sign to the files disk cleanup categories, or access permission
masks. The later configure the disk cleanup categories (e.g.
set the maximum age of debug files as 2 days), and assign
groups of files to a specific category (based on their location,
or type). System-wide policies also define default rules (e.g.
similar to ’umask’ assigning default access rights to the files,
a system-wide policy can maintain a mask of ’rwxr-x—’ to
all the files in a directory, or specify that world-writable files
are not allowed on this file system). Finally, system-wide
policies allow the system administrator to configure the policy
precedence (e.g. define precedence between folder and group
policies).

We have initially classified the files into four categories:
required, debug, audit, and temporary. Each category has a set
of disk cleanup rules associated with it. Once a user or an
application assigns a file to a specific category, that file is by
default entitled to the rules that apply to that category. Policies
can be applied to individual files, to folders (same policy for
all the files contained in the folder), or to groups of files, based
on their type. Individual file policies override folder-wide or
group-wide policies.

The significance of the disk cleanup categories is as fol-
lows. Files marked as required are essential for application
operation, and they should never be deleted, under any circum-
stances. Temporary files are the first candidates for deletion.
Temporary files (e.g. files used to install a package, or backup
a database) have a shorter lifespan, and are used less frequently
after the first use. Debug files (e.g. memory dump files)
are similar to temporary files, but they can be kept for a
longer amount of time to troubleshoot application, security,
or performance issues. Audit files (e.g. log files) are usually
kept for long periods of time, but they are accessed less, as
they get older. After a specific period of time, these files can
be compressed to save space.

A system-wide policy defines how to handle the files that
have not been assigned to any disk cleanup category. These
files can either be assigned to a default category (e.g. audit),
or inherit the category of the folder containing it. An example
of a policy (specified in JSON) is:

{
"disk_cleanup_category" : "debug",
"maximum_age" : 2

}

This policy specifies that when a debug file is at least 2
days old, it can be deleted.

B. Use cases

Our system is capable of handling three types of problems,
without requiring any human involvement: controlling access
rights changes to files, keeping file system usage within
specified boundaries, and preventing deletion of files which
are marked as required by the applications.

1) Continuous File Permission Compliance: This use case
is triggered when a user or application tries to change the per-
missions of files. While ’umask’ sets up the initial permissions,
nothing prevents the user from changing these permissions,
until there is a security incident, or a failing audit. The file
users or applications specify permission masks for the files
they own. Our policies are more flexible than the initial umask,
and can allow a range of permissible values, while preventing
others. The autonomic kernel module discards any access
rights changes that are incompatible with these permission
masks. One way to detect this today is by scanning the entire
file system and checking all the permissions, a potentially
resource-intensive operation that impacts server performance.
Our approach is not to allow this in the first place.

2) Dynamic Disk Cleanup: Dynamic disk cleanup reac-
tively takes action when the disk usage violates existing poli-
cies. The remediation process involves three lines of defense:
maintaining desired levels of free disk space, automatically
handling out of space conditions, and raising alerts when
everything else fails. This use case can be triggered by
creation, deletion, or editing of files.

Best practice suggests maintaining a certain percentage
of free space in file systems. Rather than having an agent
monitor for file system utilization, we propose that the file
system monitors itself as it manipulates files. In order to
accomplish this, we introduce the minimum, maximum, and
desired utilization thresholds (expressed as actual disk space
or utilization percentage). The minimum threshold specifies the
smallest size that a file system can shrink to. The maximum
threshold specifies the largest size to which a file system can
be expanded to. Passing the maximum threshold will always
raise an alert to a higher level system. The maximum threshold
ensures that file systems don’t grow out of control. The desired
free utilization threshold specifies the amount of free space
that should be maintained in the file system. When a write
operation reduces the amount of available disk space below
the desired threshold, the autonomic kernel module launches
an asynchronous disk cleanup. If the disk cleanup fails to
free enough space, then the file system will be expanded to
accommodate the write operation, while also maintaining the
desired free space.

When the file system usage exceeds the desired threshold,
the autonomic kernel module tries to remediate the situation
first by deleting the files that exceed a policy-specified age and
are marked as not required, and second by expanding the file
system. If that is not enough, other file systems are cleaned
up, and an attempt is made to shrink them to their minimum
and make space to allocate to the expanding file system. The
autonomic component raises an alert if all remedies fail. If the
utilization goes below the minimum threshold, the autonomic
component shrinks the file system to reclaim disk space that
can be used in the future to expand other file systems.

In order to determine the list of files to delete, the kernel
module provides an interface to the applications and users,
through which files, or folders (and their entire contents)
can be assigned to the four categories described in section

III-A (required, debug, audit, and temporary). In addition, the
autonomic kernel module complies during the disk cleanup
process with all the system-wide policies in place, such as
identifying folders or file groups that can be assigned to
one category, or defining a global age when files of a given
category can be removed.

3) Accidental Removal Protection: The third use case is
triggered when a user or application tries to delete a file that
was previously marked as required. Although this capability
is already in place (a file that is marked as ’immutable’ in
Linux cannot be deleted unless the ’immutable’ attribute is
unset manually), it can be very easily implemented using our
proposed framework. For example, our manager can set the
’immutable’ flag on all the files that are declared as required
by the applications or users.

C. Architecture

The autonomic kernel module shown in Figure 1 imple-
ments the core functionality described in the use cases above.
Instead of modifying the file system to handle these use cases,
we followed the concept of stacked file systems [14], and
bundled this functionality into a kernel module. The autonomic
kernel module is placed on top of the Linux Virtual File
System (VFS), and overwrites a subset of VFS system calls.
First, it checks if a condition that triggers a use case occurred.
Next, it tries to take remedial actions if required. Finally, it
passes the execution control to the original system call.

The autonomic kernel module also has an interface that
allows the applications and users to specify their file man-
agement policies. This interface is implemented with the help
of a virtual device, as described in section IV-B. Applications
register their policies by sending control commands to this
device, which are interpreted by the autonomic kernel mod-
ule. We also provide a set of shell commands that use the
aforementioned interface for users to register their policies.

D. Design Rationale

The main objective of our work is to demonstrate the
benefits of pushing autonomic capabilities all the way down
to the operating system. The main benefit of an autonomic
file system is the ability to detect any issues right before they
occur, take immediate actions to remediate them, and make
these events transparent to the file system operations.

For example, consider a process that attempts to write a 2
GB file to a file system which has 1 GB space left. The file
system manager should intercept the write operation, detect
the insufficient disk space condition, and take the necessary
actions (such as deleting/compressing files, or even expanding
the file system) before passing the control back to the file
system.

The design choices we considered were: writing a user-
space program, changing the kernel, or implementing a kernel
module. A user-space program needs to know about any
file system changes before taking action. The only way to
accomplish that is to subscribe to the iNotify kernel subsys-
tem [15]. In this case, the file system events are captured

after they occurred, and remedial actions cannot be taken
transparently. For example, in the disk full scenario, the write
system call will fail before the file system manager is given
the opportunity to clean or expand the disk. That leaves
us with the remaining two options, which both run in the
kernel space. As the overhead of changing and rebuilding
the entire kernel is much higher than that of developing a
separate kernel module we chose the former option. However,
for deployment in Production systems, a kernel enhanced
with these functionalities would be a better option, indeed.
As opposed to solutions based on periodic monitoring, our
approach has the advantage of immediately detecting events
and taking remediate actions. We demonstrate the effectiveness
of taking these reactive actions in section V.

As discussed in section III-C, the autonomic kernel module
is developed on top of VFS. This allows our module to work
with a wide range of file systems, rather than restricting
its usability to a specific file system implementation. The
portability, however, comes with a performance cost, compared
to a solution that is implemented in the file system.

Our design moves configuration decisions from the ap-
plication users to the application developers. The rationale
behind this is that the application developers have a better
understanding of how the applications work and their resource
requirements. Another important benefit of this approach is
that the application development process goes through ex-
tensive testing, so the file system management configuration
set by application developers is much less error-prone that a
similar solution provided by a user.

IV. IMPLEMENTATION

To show the effectiveness of our approach, we have built
a prototype of an autonomic file system manager, and im-
plemented it as a loadable Linux kernel module. We chose
to implement the prototype in a kernel module, rather than
modifying the kernel itself, because a module can be rapidly
developed, built, tested and experimented with. We chose
Linux as the operating system because it is open source, and it
exposes a set of low level routines to write loadable modules.
In this section, we discuss the implementation of the prototype:
its interfaces with the file system and the user-space programs,
its policies and its storage subsystem.

A. File System Interface

The file system management process is activated upon
detection of events that change file and directory permissions,
or create, remove, or edit files. To achieve this behavior, we
have modified the kernel system call table, to point to our
modified implementation of each system call that triggers any
of the events mentioned above.

We have modified the implementation of each system call
that changes the state of the file system by adding a policy
compliance check, and a set of remedies to be applied if
the compliance check fails. After these additional steps are
completed, the call proceeds with its normal execution. For
example, when a write request is detected, the autonomic

Fig. 1. System Architecture

manager retrieves the file corresponding to the file descriptor
parameter, and the file system where this file is located. Then
it checks if the utilization of the file system after the write is
compliant with the usage policy (i.e. the amount of free space
is still above the desired threshold). If the compliance check
fails, the manager attempts to apply automated remedies (clean
up or expand the file system). After the automated remedies
complete successfully, the original write system call is invoked
to write the file on the disk.

To accomplish this we modified the kernel’s system call
table during the module’s bootstrapping. The entries corre-
sponding to our desired system calls in the table were modified
to point to our provided implementation. Once a system call
is intercepted, the low level routines of VFS exported by the
Linux kernel are used to read file system changes and error
conditions are figured out.

Most of the actions to read the file system state and changes,
as well as to remedy error conditions are performed through
the VFS interface. Exceptions to this rule are the operations
of expanding or shrinking a file system, which are performed
using Logical Volume Management (LVM) tools. The LVM
commands are spawned from the kernel module to perform
modifications to the volumes on which the file system resides.

B. User-space Interface

The user-space interface enables the communication be-
tween the autonomic file system manager on one side, and
applications and users on the other side. Users and applications
use the interface to send to the autonomic manager the policies
that define the file system usage requirements. The interface
comes in two different flavors, as described below.

First, a configuration file stores both system-wide and
directory / file specific policies. The autonomic kernel module
loads this file during bootstrapping, and sets its internal
state accordingly. During steady-state operation, the autonomic
manager can detect any changes made to the file system.
Upon detecting a change to the configuration file, the manager
automatically reloads its policies. By editing this configuration
file, a user can change the manager behavior on the fly, without
restarting it.

Second, user-space applications can use an API to the
autonomic kernel module to express their file system usage
requirements. We implemented this API with the help of
a virtual device, by exploiting the fact that a user process
can send low level I/O commands to any device (through
ioctl system call) along with their own parameters. Our
autonomic kernel module registers a virtual device1 with the

1a physically non-existent device

OS during bootstrapping. Any ioctl command issued by a
user process to this virtual device is intercepted by the ioctl
implementation provided by our autonomic kernel module,
which interprets the commands as configuration commands
for itself, and sets its configuration parameters accordingly.
In our reference implementation the following configuration
options are allowed from a user-space program:

• Specify permission mask for a file or directory
• Categorize a file or directory into one of the four proposed

categories

C. Policies

Policy authoring, storage and management tools have been
already extensively studied in various contexts [16]. Devel-
oping a full policy framework is outside the scope of this
paper. Therefore, we assume the existence of a policy delivery
platform that allows to propagate updates to all the managed
servers. We also adopt a very simple policy specification
format, JSON for specifying system-wide and user-defined
policies in our reference implementation. These policies are
persistently stored in the disk as configuration files and are
loaded during bootstrapping.

V. EVALUATION

A. Evaluation Setup

We have run our experiments in a Ubuntu 13.04 Linux
Virtual Machine, with an ext3 file system, 2 Virtual CPUs,
3 GB of RAM, and 30 GB hard disk. The virtual machine is
hosted on an NTFS file system. We have partitioned the hard
disk into a 15 GB system partition, and a 15 GB partition
allocated for the measurements. We have used Logical Volume
Manager (LVM) to create file systems with various initial
sizes on the experimental partition. To ensure fairness between
different methods and between each run, the experimental file
system was formatted prior to each run.

We have used FileBench [17] and Postmark [18] two of the
most popular file system benchmarking utilities (as shown in
[19]) to evaluate the load that the autonomic file system man-
ager puts on the system, as well as the manager’s effectiveness
in keeping the file system utilization within bounds. During
the evaluation process, we took into account the limitations
of these tools. First, both FileBench and Postmark are micro-
benchmarking tools that put a short-term load on the system
to measure its I/O performance, but are not able to emulate
long-term steady state behavior, a feature needed to perform a
realistic study of disk cleanup and disk expansion processes.
However, given their features (most notably the capability to
generate various workloads, and their wider acceptance), we
decided to use these tools, rather than developing our own
custom test suite.

We used FileBench to measure the overhead that the
autonomic manager imposes on the system when no disk
cleanup or disk expansion procedures are triggered. In this
case, the overhead still occurs, because the file system manager
intercepts each write system call and performs checks on the
file system. In fact, this will comprise the majority of the total

introduced overhead, because it happens on a much faster time
scale than the disk cleanup or expansion activities. Filebench
provides the capability to generate workload following a
number of predefined profiles. Each profile has different read
/ write ratios, and represents the I/O pattern of some real life
application. For the purpose of our studies we have run the
experiments using three predefined profiles – simulating the
workload of a file server, and a web server.

We have used Postmark (which emulates the workload of a
mail server) to measure the effectiveness of the autonomic file
system manager in keeping the utilization within bounds. We
created a scenario where the file system utilization grows on a
fast tune scale, and observed the way in which the disk cleanup
and expansion procedures operate. For these experiments, we
have set an upper bound of 90% for the disk utilization.

We ran each experiment for 20 minutes with a 30-second
statistics collection interval and took the best result for 3 runs.
We configured the average file size, the number of files and
the I/O size used parameters for both FileBench and Postmark
according to the guidelines in [20].

B. Evaluation Metrics

To determine the overhead that the autonomic manager
imposes on the system, we have measured the averages of
throughput (specified in I/O operations per second) and CPU
time per I/O operation, as calculated by FileBench at each
statistics collection interval.

To measure the effectiveness of the autonomic file system
manager, we captured the file system utilization and size over
time in 5-second intervals.

We performed both experiments with and without the auto-
nomic manager activated, and compared the results.

C. Evaluation Scenarios

Two evaluation scenarios are presented. In the first scenario,
we monitor the performance overhead of the file system
manager while it is running in a sufficiently large file system,
where no disk cleanup or disk expansion procedures are
triggered. In the second scenario, we start with a smaller
sized file system, and perform disk cleanup and disk expansion
operations, as soon as the utilization crosses a threshold (90%).
We examine the disk utilization against time to see how well
disk cleanup and expansion work.

D. Results

From the figures 2 and 3 we estimate the overhead imposed
by the autonomic manager at about 10%. This overhead
comes from the write operations. We introduce an additional
read operation in each write system call. If we estimate the
overhead of this read I/O operation to be about 20% per write
system call, we get an overhead of 10% when half of the
I/O operations are reads and the other half are writes. We
make no changes to the read operations, and therefore there
is 0 additional overhead. We provide a similar explanation for
the better performance of the autonomic file system manager
for the web server workload. In the case of the file server

 4000

 4200

 4400

 4600

 4800

 5000

 0 200 400 600 800 1000 1200

T
hr

ou
gh

pu
t (

op
s/

s)

Elapsed Time (second)

Throughput (File Server Profile)

Autonomic Manager
Regular FS

(a) File Server

 6000

 6200

 6400

 6600

 6800

 7000

 0 200 400 600 800 1000 1200

T
hr

ou
gh

pu
t (

op
s/

s)

Elapsed Time (second)

Throughput (Web Server Profile)

Autonomic Manager
Regular FS

(b) Web Server

Fig. 2. Throughput

 660

 680

 700

 720

 740

 760

 780

 800

 0 200 400 600 800 1000 1200

C
P

U
 T

im
e

/ o
ps

 (
µs

)

Elapsed Time (second)

CPU Time Per Operation (File Server)

Autonomic Manager
Regular FS

(a) File Server

 420

 425

 430

 435

 440

 445

 450

 455

 460

 0 200 400 600 800 1000 1200

C
P

U
 T

im
e

/ o
ps

 (
µs

)

Elapsed Time (second)

CPU Time Per Operation (Web Server)

Autonomic Manager
Regular FS

(b) Web Server

Fig. 3. CPU Time

workload, about half of the I/O operations are reads and half
are writes. For the web server workload, the ratio between
reads and writes is about 10 : 1 ([20]), and hence our system
performs better in this case.

Figure 4 shows that the system behaves as expected in the
case when the file system utilization increases over time. If we
are given an elastic bound for expansion, the autonomic man-
ager can accommodate writes without causing the processes
to fail, while a regular file system fails as soon as it runs out
of allocated space.

VI. FUTURE WORK

In this paper, we have investigated the benefits of placing
the file system manager inside the operating system kernel. We
have designed and implemented a solution that encapsulates
the file system monitoring, troubleshooting and error remedial

operations in a Linux kernel module. The main benefits of
our approach are the capability to detect issues instantly when
they occur, and fix these issues transparently, without the
invoking applications being aware that they occurred. These
capabilities are not present in external agent architectures,
including contemporary configuration management systems,
like Puppet, Chef, or CFEngine. We have investigated the
performance and overhead of this solution.

In order to deploy this solution in a Production environment,
we need to address a number of research challenges. First, we
need to guarantee the soundness of the policy specification,
as any holes in this specification can lead to a security
breach. Second, we must be able to associate applications
with policies, as well as with the resources to which these
policies apply. For example, an application should not be able
to mark files that do not belong to it as ”temporary”. Also,

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 20 40 60 80 100 120 140 160
 0

 500

 1000

 1500

 2000

F
ile

 S
ys

te
m

 U
til

iz
at

io
n

(%
)

F
ile

 S
ys

te
m

 S
iz

e
(M

eg
ab

yt
es

)

Elapsed Time (second)

Autonomic Manager - FS Utilization
Autonomic Manager - FS Size

Regular FS - FS Utilization
Regular FS - FS Size

Fig. 4. File System Utilization

when an application is uninstalled, all the policies specified
by that application should be revoked. Third, while our study
thus far focused on the file system, it could be extended to
manage other system entities, such as processes, memory, or
CPU. Fourth, an autonomic operating system represents one
layer in an automation architecture. Although the autonomic
management capabilities within the OS ensure its smooth
operation by tackling the error conditions by itself, a higher
layer component in the automation architecture can look into
the root cause of the errors and take preventive measures to
stop these from occurring at the first place.

In conclusion, this work is a step in investigating how
to design data center management processes that default to
automation and only involve humans when everything else
fails. We call this approach Extreme Automation. By adding
autonomic management functions inside the operating sys-
tem, we aim to implement Extreme Automation management
processes that are scalable with the growth of the cloud,
continuously monitor the state of the system to detect any
issues, and transparently fix these issues before they turn into
errors that perturb the system operation. While our initial work
is focusing on making the file system self-managing, we think
that the concept can be expanded to other parts of the operating
system as well.

REFERENCES

[1] M. C. Huebscher and J. A. McCann, “A survey of autonomic computing
– degrees, models, and applications,” ACM Computing Surveys (CSUR),
vol. 40, no. 3, p. 7, 2008.

[2] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, pp. 41–50, 2003.

[3] H. Hoffmann, M. Maggio, M. D. Santambrogio, A. Leva, and A. Agar-
wal, “SEEC: A framework for self-aware computing,” MIT CSAIL
Technical Report, MIT-CSAIL-TR-2011-046, 2010.

[4] D. B. Bartolini, R. Cattaneo, G. C. Durelli, M. Maggio, M. D. Santam-
brogio, and F. Sironi, “The autonomic operating system research project:
achievements and future directions,” in Proceedings of the 50th Annual
Design Automation Conference. ACM, 2013, p. 77.

[5] “Self-healing NTFS in windows server 2008 and windows vista,”
http://blogs.technet.com/b/apawar/archive/2008/02/14/self-healing-ntfs-
in-windows-server-2008-and-windows-vista.aspx.

[6] “NITIX - autonomic linux-based server operating system,”
http://www.iccci.com/images/Nitix Letter lo.pdf.

[7] “Oracle solaris ZFS administration guide,”
http://docs.oracle.com/cd/E19253-01/819-5461/zfsover-2/.

[8] M. Bhadkamkar, J. Guerra, L. Useche, S. Burnett, J. Liptak, R. Ran-
gaswami, and V. Hristidis, “BORG: Block-reorganization for self-
optimizing storage systems,” in FAST, 2009, pp. 183–196.

[9] O. C. Leonard, J. Nieh, E. Zadok, A. Shater, J. Osborn, and C. P. Wright,
“The design and implementation of elastic quotas: A system for flexible
file system management,” 2002.

[10] M. Devarakonda, D. Chess, I. Whalley, A. Segal, P. Goyal, A. Sachedina,
K. Romanufa, E. Lassettre, W. Tetzlaff, and B. Arnold, “Policy-based
autonomic storage allocation,” in Self-Managing Distributed Systems.
Springer, 2003, pp. 143–154.

[11] P. K. Gunda, L. Ravindranath, C. A. Thekkath, Y. Yu, and L. Zhuang,
“Nectar: automatic management of data and computation in datacenters,”
in Proceedings of the 9th USENIX conference on Operating systems
design and implementation. USENIX Association, 2010, pp. 1–8.

[12] H. V. Madhyastha, J. C. McCullough, G. Porter, R. Kapoor, S. Savage,
A. C. Snoeren, and A. Vahdat, “scc: cluster storage provisioning
informed by application characteristics and slas,” FAST’12, 2011.

[13] S. Uttamchandani, K. Voruganti, S. Srinivasan, J. Palmer, and D. Pease,
“Polus: Growing storage qos management beyond a 4-year old kid,”
in Proceedings of the 3rd USENIX Conference on File and Storage
Technologies. USENIX Association, 2004, pp. 31–44.

[14] J. S. Heidemann and G. J. Popek, “File–system development with
stackable layers,” ACM Transactions on Computer Systems (TOCS),
vol. 12, no. 1, pp. 58–89, 1994.

[15] “inotify - monitoring file system events,”
http://linux.die.net/man/7/inotify.

[16] R. Boutaba and I. Aib, “Policy-based management: A historical perspec-
tive,” Journal of Network and Systems Management, vol. 15, no. 4, pp.
447–480, 2007.

[17] “Filebench: Filesystem benchmarking tool,”
http://sourceforge.net/projects/filebench/.

[18] J. Katcher, “Postmark: A new file system benchmark,” Tech-
nical Report TR3022, Network Appliance, 1997. www. netapp.
com/tech library/3022. html, Tech. Rep., 1997.

[19] V. Tarasov, S. Bhanage, E. Zadok, and M. Seltzer, “Benchmarking file
system benchmarking: It* is* rocket science,” HotOS XIII, 2011.

[20] P. Sehgal, V. Tarasov, and E. Zadok, “Evaluating performance and energy
in file system server workloads.” in FAST, 2010, pp. 253–266.

