
Managing the File System from the Kernel

Shihabur R. Chowdhury*, Constantin M. Adam**, Frederick Wu**,
John Rofrano**, and Raouf Boutaba*

*David R. Cheriton School of Computer Science, University of Waterloo
**IBM TJ Watson Research Center

Presented By: Shihabur R. Chowdhury

File System issues

 The file systems get full

 package files, backup files, “old” files

 Files get accidentally deleted

 /etc/resolv.conf accidentally deleted; name resolution

stops

 File permissions get accidentally changed

 accidentally given global write permission to /etc/hosts

 may cause security problems

2

File System Management: the traditional way

 File System issues are solved manually

 Enter commands in the CLI

▪ Error prone

▪ Time consuming

▪ Sometimes unproductive due to repetitive tickets

 Configuration management tools reduce the manual task

 Less responsive

 Detects an anomaly after they occur

 Requires an infrastructure to work

3

File System Management: the traditional way
(contd…)

 Why the file system currently cannot take care of itself ?

 No knowledge of the file system usage requirements of

applications

▪ Which are the temporary files ?

▪ Which are the required files ?

▪ etc.

 No policy based management interface available

 What if the file system took care of itself ?

 Reduction in problem tickets

 Reduction in management overhead

4

File System Management: The Extreme
Automation Way

 Applications should be able to tell the file system about

their requirements

 /etc/apache/httpd.conf is a required file; don’t delete it

 Never allow the /etc/apache/httpd.conf to be world

writable

5

File System Management: The Extreme
Automation Way

 The system administrator should be specify policies; the

file system should enforce it

 There should be at least 10% free space on /mnt/share

 In other words
 Build the management capabilities within the file system itself

 Provide interface to users and applications

6

Autonomic File System Management: Properties

 Self – cleaning

 Should be able to clean the unnecessary files

 Should be able to expand itself up to policy specified

threshold if necessary

 Self – protecting

 Should be able to prevent non policy compliant changes

 Reactive and Responsive

 Detect the problem just before they occur

 Transparently remediate problem reactively

7

Use Cases

 Disk Cleanup

 Intercept write operations and detect disk full right before

they occur

 Try to clean up space by deleting files according to policies

 As a last step expand the file system

 After the remediation pass the control back to the original

system call

8

Use Cases

 File Protection

 Allow applications and users to specify access mask for files

 e.g. /etc/resolv.conf can never be world writable

 Prevent non compliant permission changes in the first place

 Allow applications and users to specify files as required

 Prevent accidental deletion of required files

9

Policies

 Four initial categories for files

 Temporary – can e deleted immediately

 Debug – can be deleted after a certain age

 Audit – can be compressed to save space

 Required – cannot be deleted at all

 Categories identify the deletion / compression candidates

10

Policies

 System-wide policies

 Configure category parameters

 e.g. maximum age of debug files

 Currently stored in plain text configuration file

 Application / User policies

 Communicates filesystem usage requirement with the

filesystem

 A user-space API is provided

11

Interfaces

 File System Interface

 Access low level file system routines for reading its state and

performing actions

 User-space Interface

 Understand the file system usage requirement of applications

 Allow users and applications to specify their policies

12

File system: The current picture

System Call Table

sys_open

sys_write

sys_unlink

.

.

.

.

System call
interface

glibc

Linux Virtual File System (VFS)

ext2 ext3 ext4 xfs reiserfs

sys_unlink:

sys_write:

sys_open:

......

......

Kernel
Space

User Space
Process

User
Space

13

System Architecture

System Call Table

sys_open

sys_write

sys_unlink

.

.

.

.

Autonomic Manager
(Kernel Module)

Custom System Calls

custom_sys_unlink:

 sys_unlink()

custom_sys_write:

 sys _write()

custom_sys_open:

 sys_open()

Access mask enforcer

File system expander

System call
interface

glibc

Virtual Character
Device

Configuration
Engine

Linux Virtual File System (VFS)

ext2 ext3 ext4 xfs reiserfs

sys_unlink:

sys_write:

sys_open:

......

......

Kernel
Space

User Space
Process

User
Space

User space API
(ioctl commands)

Disk Cleaner

14

Implementation: Proof of Concept

 Autonomic Manager implemented as a Loadable Kernel

Module

 It can intercept system calls

▪ We have identified a set of system calls to intercept according to

our need

 Perform error condition checking

 Perform remedial actions

▪ Delete files according to application usage requirements

▪ Expand the file system by spawning Logical Volume Management

(LVM) processes

15

Implementation

 Use-space API

 The kernel module registers a pseudo device

▪ /dev/fs_interceptor

 User programs can send control commands to the device

▪ Using ioctl system call

 The virtual device interprets the commands to configuration

commands

16

Evaluation: Setup

 System configuration

 Ubuntu 13.04 virtual machine with 2 vCPUs, 3GB memory and

30GB disk

 Benchmarks

 Filebench

 File server (1:1 read and write) and Web server (10: 1 read and write)

workload

 Used to measure overhead

 Impact on throughput

 CPU time

 Postmark

 Used to demonstrate the effectiveness of self-cleaning property

17

Evaluation: CPU time

File server workload

< 7% extra CPU time

Web server workload

<5% extra CPU time

18

Evaluation: Throughput

File server workload

< 5% throughput reduction

Web server workload

<3% throughput reduction

19

Evaluation: File System Utilization

Policy specified

Utilization (<=90%)

Is always maintained

20

Conclusion

 We need automaticity at the grass – root to make

management easier and less error prone

 Autonomy can be at multiple levels

 When the autonomic file system manager fails, it can notify a

higher layer, which has a broader view of the system

 When all layers fail to solve an issue, the human gets involved

 Autonomic management at the grass root level can be

considered for other resources

 CPU, Memory, Network Interface etc.

21

Questions

?

22

Related Works

 Autonomic Computing initiative by IBM

 Monitoring agents monitors for non-compliant behavior

 Plan an action according to learned environment and knowledge
base

 Autonomic OS (AcOS) – DAC ‘13

 Autonomic resource allocation

 API for applications to express resource requirement

 Elastic Quota File system - 2002

 Allow users to exceed the quota by giving them some reclaimable
elastic space

 Most of the part built as user-space process

 NITIX

 Self healing and managing filesystem

 Acquired by IBM in 2008

23

