Managing the File System from the Kernel

Shihabur R. Chowdhury*, Constantin M. Adam™, Frederick Wu™,
John Rofrano™, and Raouf Boutaba*

*David R. Cheriton School of Computer Science, University of Waterloo
“IBM TJ Watson Research Center

I Presented By: Shihabur R. Chowdhury

File System issues

» The file systems get full
package files, backup files,“old” files

» Files get accidentally deleted
/etc/resolv.conf accidentally deleted; name resolution
stops

» File permissions get accidentally changed
accidentally given global write permission to /etc/hosts

may cause security problems

File Systemm Management: the traditional way

= File System issues are solved manually

Enter commands in the CLI
Error prone
Time consuming
Sometimes unproductive due to repetitive tickets
= Configuration management tools reduce the manual task
Less responsive
Detects an anomaly after they occur

Requires an infrastructure to work

File System Management: the traditional way
(contd...)

= Why the file system currently cannot take care of itself ?
No knowledge of the file system usage requirements of
applications
Which are the temporary files ?
Which are the required files ?
etc.
No policy based management interface available
= What if the file system took care of itself ?

Reduction in problem tickets

Reduction in management overhead

File System Management: The Extreme
Automation Way

» Applications should be able to tell the file system about
their requirements
/etc/apache/httpd. conf is a required file; don’t delete it

Never allow the /etc/apache/httpd.conf to be world
writable

File System Management: The Extreme
Automation Way

= The system administrator should be specify policies; the
file system should enforce it

There should be at least 10% free space on /mnt/share

= In other words
Build the management capabilities within the file system itself

Provide interface to users and applications

Autonomic File System Management: Properties

= Self - cleaning
Should be able to clean the unnecessary files

Should be able to expand itself up to policy specified
threshold if necessary

= Self - protecting

Should be able to prevent non policy compliant changes
= Reactive and Responsive

Detect the problem just before they occur

Transparently remediate problem reactively

Use Cases

» Disk Cleanup

Intercept write operations and detect disk full right before
they occur

Try to clean up space by deleting files according to policies
As a last step expand the file system

After the remediation pass the control back to the original
system call

Use Cases

» File Protection

Allow applications and users to specify access mask for files
e.g. /etc/resolv.conf can never be world writable
Prevent non compliant permission changes in the first place
Allow applications and users to specify files as required

Prevent accidental deletion of required files

Policies

» Four initial categories for files
Temporary — can e deleted immediately
Debug — can be deleted after a certain age
Audit — can be compressed to save space

Required — cannot be deleted at all

» Categories identify the deletion / compression candidates

10

Policies

» System-wide policies
Configure category parameters
e.g. maximum age of debug files

Currently stored in plain text configuration file

» Application | User policies

Communicates filesystem usage requirement with the
filesystem

A user-space APl is provided

11

Interfaces

» File System Interface

Access low level file system routines for reading its state and
performing actions

» User-space Interface
Understand the file system usage requirement of applications

Allow users and applications to specify their policies

12

File system: The current picture

User
Space User Space
Process
glibe
Kernel j t
Space System call
interface
sys_open :
. T
sys_write .
\\ 3~o -
\ RN
‘v N
S oo - \
S 0
. S
sys_unlink -———-—-—- ‘\{T _________
N o m = =—
System Call Table MY . . . ==
y \v S Linux Virtual File System (VFS) ~ ~ Y
sys_open:\ =P sys write: sys_unlink:
13 ext2 ext3 ext4 | xfs reiserfs

System Architecture

User
Space User Space
Process
glibe
Kernel
a
Space System call
interface
sys_open _--r
sys_write ———F

sys_unlink

Autonomic Manager

(Kernel Module)

User space API
(ioctl commands)

——’

System Call Table

14

- > custom_sys_write:

sys _write()
Jcustom_sys_unlink:

sys_unlink()

Virtual Character
Custom System Calls Device
- P custom_sys_open: *
....... Configuration
sys_open() Eng_;ine

Access mask enforcer

Disk Cleaner

File system expander

g

Linux Virtual File System (VFS)

sys_open:

sys_write:

sys_unlink:

ext2

reiserfs

Implementation: Proof of Concept

= Autonomic Manager implemented as a Loadable Kernel
Module

It can intercept system calls

We have identified a set of system calls to intercept according to
our need

Perform error condition checking
Perform remedial actions

Delete files according to application usage requirements

Expand the file system by spawning Logical Volume Management
(LVM) processes

15

Implementation

s Use-space API

The kernel module registers a pseudo device
/dev/fs_interceptor

User programs can send control commands to the device
Using ioctl system call

The virtual device interprets the commands to configuration
commands

16

Evaluation: Setup

» System configuration

Ubuntu 13.04 virtual machine with 2 vCPUs, 3GB memory and
30GB disk

» Benchmarks
Filebench

File server (1:1 read and write) and Web server (10: | read and write)
workload

Used to measure overhead

Impact on throughput
CPU time

Postmark

Used to demonstrate the effectiveness of self-cleaning property

17

Evaluation: CPU time

CPU Time / ops (us)

460
455
450
445
440
435
430
425
420

18

CPU Time Per Operation (File Server)

Elapsed Time (second)

800 L] T 1 T L) L
Autonomic Manager ----+----
780 Regular FS e
é 760 R
«\ :: ., .
. ? 740 .‘.&.,,"‘w-v‘: rey *-’;4“.': \‘*‘.-4'*'
File server workload | O 720 pomge 2 A .
. « |: . R '
< 7% eXtra CPU tlme =) TOD ,P-..."“"'".."..""“- '._-,,-'--.-l.-..‘ L »e
% .._.'. Rt B A ¥ |
680
CPU Time Per Operation (Web Server) 660
Autonomic Manager ---+--- 200 400 600 800 1000 1200
5 ! Regular FS e
Elapsed Time (second)
L 3 i
R . .
i it 1
. A A N L A Y " | Web server workload
--.. P . i T . 1\'_1‘.“; ¥ = > .
Vet et e e YR, R <5% extra CPU time
» W < N ¢ ¥
0 200 400 600 800 1000 1200

Evaluation: Throughput

Throughput (ops/s)

Throughput (File Server Profile)

7000

6800

6600

6400

6200

6000

19

5000 L} L} L) L L L
Autonomic Manager ----+----
Regular ES - @ e
4800
0
. 3 + @
File server workload | S 4600 |
. < = .
< 5% throughput reduction 2 |
S 4400 | ¥
o
e
|_
4200
Throughput (Web Server Profile)
. . ' . . . 4000 L L i i i i
Autonomli;{: Malnagljzesr I 0 200 400 600 800 1000 1200
egular ° Elapsed Time (second)
'
L@ ::':I‘-: '_Po ® ?QBQ Q* Q (] ‘!- @:
T L Y A LI .Y JATR R Web server workload
JARTN TRt A (o cs oo .
A VAR T/ A \ <3% throughput reduction
¥ iy
0 200 400 600 800 1000 1200

Elapsed Time (second)

Evaluation: File System Utilization

Policy specified
Utilization (<=90%)
Is always maintained

20

160) y r ' . ' :
Autonomic Manager - FS Utilization —=—
140 F Autonomic Manager - FS Size - .- N
T Regular FS - FS Utilization
— Regular FS - FS Size ———-
é 120 i E-m-m-m T
5 v .
= 100 p d
5 80} .
= 4
L
9@ 60 F 4
U) H--&2-2
Q
i.l__ 40 B / m-u- -
20 F 4
O 1 1 1 1 1 1 1

0 20 40 60 80 100 120 140 160

Elapsed Time (second)

2000

1500

1000

500

File System Size (Megabytes)

Conclusion

= We need automaticity at the grass — root to make
management easier and less error prone
= Autonomy can be at multiple levels

When the autonomic file system manager fails, it can notify a
higher layer, which has a broader view of the system

When all layers fail to solve an issue, the human gets involved
= Autonomic management at the grass root level can be
considered for other resources

CPU, Memory, Network Interface etc.

21

22

Questions

?

Related Works

= Autonomic Computing initiative by IBM
Monitoring agents monitors for non-compliant behavior

Plan an action according to learned environment and knowledge
base

= Autonomic OS (AcOS) — DAC ‘I3

Autonomic resource allocation

API for applications to express resource requirement
= Elastic Quota File system - 2002

Allow users to exceed the quota by giving them some reclaimable
elastic space

Most of the part built as user-space process

= NITIX
Self healing and managing filesystem
Acquired by IBM in 2008

23

