
Connectivity-aware Virtual

Network Embedding

Nashid Shahriar, Reaz Ahmed,

Shihabur R. Chowdhury, Md Mashrur

Alam Khan, Raouf Boutaba

Jeebak Mitra,
Feng Zeng

Outline

 Survivability in Virtual Network Embedding (VNE)

 Connectivity-aware Virtual Network Embedding (CoViNE)

 State of the art

 Solution approaches

 CoViNE-ILP

 CoViNE-Fast

 Evaluation

 Summary and future work

2

Outline

 Survivability in Virtual Network Embedding (VNE)

 Connectivity-aware Virtual Network Embedding (CoViNE)

 State of the art

 Solution approaches

 CoViNE-ILP

 CoViNE-Fast

 Evaluation

 Summary and future work

3

Virtual Network Embedding

 A virtual network (VN) is a collection of

virtual nodes and virtual links

 Embedded on a substrate network (SN)

 A virtual node is hosted on a substrate

node

 Multiple virtual nodes can coexist

 A virtual link spans over a substrate path

 Link capacities are not exceeded

4

x

y z

A

B

D

C

VN

SN

Survivability in VNE (SVNE)

5

x

y z

A

B

D

C

x

y z

A

B

D

C

Survivability in VNE (SVNE)

6

 Limitations of traditional SVNE

 Requires pre-allocated backup path

disjoint from the primary path

 Wastage of expensive resources

 Sharing of backup path possible

 Sacrifices level of survivability

 Cannot survive arbitrary failure

scenarios

 Multiple substrate link failures

x

y z

A

B

D

C

Outline

 Survivability in Virtual Network Embedding (VNE)

 Connectivity-aware Virtual Network Embedding (CoViNE)

 State of the art

 Solution approaches

 CoViNE-ILP

 CoViNE-Fast

 Evaluation

 Summary and future work

7

Connectivity-aware VNE (CoViNE)

8

 A weaker form of survivability

 Guarantees connectivity of a VN

 Less backup resource needed

 Computes alternate path upon failure

 Traffic is rerouted based on priority

thanks to SDN controller

 Suitable for carrying best-effort traffic

 Tolerates small amount of delay

x

y z

A

B

D

C

CoViNE Key Question

9

How to resource efficiently embed a

VN while ensuring connectivity under

multiple (k) substrate link failures?

x

y z

A

B

D

C

Un-survivable Embedding

x

y z

A

B

D

C

Survivable Embedding

CoViNE challenges

10

x

y z

A

B

D

C

Un-survivable Embedding Survivable Embedding

x

y z

A

B

D

C

CoViNE Challenges

11

Problem Statement

 Decomposed sub-problems

 Augment the VN to make it k + 1 edge connected

 k + 1 edge-disjoint virtual paths exist between each pair of
virtual nodes*

 Identify sets of virtual links to be embedded disjointedly

 Ensures k + 1 edge-disjoint paths between each pair of virtual
nodes in the embedding

 Embed the augmented VN onto SN

 Adheres to disjointedness constraints while minimizing total cost
of embedding

12

* Menger’s theorem: https://en.wikipedia.org/wiki/Menger%27s_theorem

Outline

 Survivability in Virtual Network Embedding (VNE)

 Connectivity-aware Virtual Network Embedding (CoViNE)

 State of the art

 Solution approaches

 CoViNE-ILP

 CoViNE-Fast

 Evaluation

 Summary and future work

13

State of the Art
 Not studied in network virtualization context

 A special case in IP-over-WDM network literature for IP connectivity

 Do not consider node embedding

14

Approach Limitation

Cut-set based approach * Only applicable to k=1, not scalable

Survivable Mapping Algorithm by

Ring Trimming**

Fails to deal with arbitrary topology

and multiple failures

Logical topology augmentation for

guaranteed survivability***

Generates large number of

disjointedness constraints

* E. Modiano et al., “Survivable lightpath routing: a new approach to the design of wdm-based networks,” IEEE JSAC, 2002.

** M. Kurant et al., “Survivable mapping algorithm by ring trimming (smart) for large ip-over-wdm networks,” in BroadNets, 2004.

*** K. Thulasiraman et al., “Logical topology augmentation for guaranteed survivability under multiple failures in ip-over-wdm

optical networks,” Optical Switching and Networking, vol. 7, no. 4, pp. 206–214, 2010.

Outline

 Survivability in Virtual Network Embedding (VNE)

 Connectivity-aware Virtual Network Embedding (CoViNE)

 State of the art

 Solution approaches

 CoViNE-ILP

 CoViNE-Fast

 Evaluation

 Summary and future work

15

Conflicting Set Abstraction

 Two virtual links are conflicting if

they must be embedded on

disjoint paths

 Conflicting set is a function of k

 Set of links conflicting with a given link

 xy, yz, and zx are conflicting with

each other for k=1

 Conflicting set of xy = {yz, zx}

16

x

y z

A

B

D

C

Computing Conflicting Sets

 Computing the optimal conflicting sets for

all virtual links in a VN is NP-complete

 Reduction from Minimum Vertex Coloring

 A heuristic algorithm to compute

conflicting set of a link, ab

 For two endpoints of ab, find k+1 edge-

disjoint paths in the VN

 ab is conflicting with each link in other k paths

 A link in an edge-disjoint path is conflicting

with each link in all other paths

 O(N2) conflicting set computations!

 Can be reduced to O(N)

17

a

b

d

c

Virtual Link ab
p1 = {ab}
p2 = {ac, bc}
p3 = {ad, db}
Conflict set of ab =
{ac, bc, ad, db}
Conflict set of ac =
{ab, ad, db}

p1

p2

p3

Computing Conflicting Sets (cont.)

 Incremental k+1 edge-connected sub-

graph construction

 Start with a sub-graph G of the VN

containing a randomly chosen node

 Repeat until all nodes are added to G
 Select a node, v adjacent to a node in G

 Find k+1 edge-disjoint paths from G to v

 For all links in these paths, update

conflicting sets

 Add v to G

 Incremental sub-graph construction yields

smaller conflicting sets

 Only considers links in an MST of the VN!

18

a

b

d

c

3 edge-connected sub-graph
(a, b) and Virtual Link ad

p1 = {ad}
p2 = {bd}
p3 = {ac, cd}
Conflict set of ad =
{…, bd, ac, cd}
No need to compute for bd!

VN Augmentation
 Augmentation of VNs with less than k+1 edge connectivity

 Add max(0, k+1-m) parallel virtual links between a k+1 edge-connected

sub-graph, G and a virtual node, v not in G

 m is the number of edge-disjoint paths from G to v

 Does not change pairwise connectivity patterns of the virtual nodes

19

a

b

d

c

e f

CoViNE-ILP
 An integer linear programming formulation for embedding a VN

 Minimize total bandwidth cost

 c(l): cost of unit bandwidth on substrate link l

 b: bandwidth demand of virtual link l’

 Pl’: substrate path on which l’ is embedded

 E’ : set of virtual links

 Constraints

 Node mapping satisfies location constraints

 A virtual link is only mapped to a single substrate path

 Link mapping adheres to disjointedness constraints

 No over commitment of substrate resource capacity
20

CoViNE-Fast

 Fast and scalable heuristic algorithm

 Node mapping

 Minimizes total cost of mapping incident virtual links

 Adheres to given location constraints of virtual nodes

 Maps virtual nodes to substrate nodes in a greedy manner

 Link mapping

 Minimizes cost of mapped substrate path

 Satisfies disjointedness constraints

 Based on the constrained minimum cost path first algorithm

 Modified version of Dijkstra’s shortest path algorithm

 Node and link mapping in a coordinated manner

21

E

D

M

N

O

L

KJ
H

I

G

F

B

A

C

x

y z

 Iteration for x

 Location (x) = {H, I, J, G}

 Compute minimum cost

substrate paths from H

 P(xy) ={HI-ID}

 P(xy)’ ={HJ-JI-IN-ND}

 P(xz) ={HG-GI-IN}

 P(xz)’ ={HJ-JL-LN}

 Compute similarly for I, J, G

 Let, I yields minimum cost

 Map x to I

CoViNE-Fast in action

E

D

M

N

O

L

KJ
H

I

G

F

B

A

C

x

y z

 Iteration for y

 Location (y) = {C, D, E, A, B}

 Compute minimum cost

substrate paths from C

 P(xy) ={CD-DI}

 P(xy)’={CE-EI}

 P(yz) ={CA-AM}

 If D yields minimum cost

 Map y to D

 Map xy and (xy)’

 M(xy) = {ID}

 M(xy)’ = {IN, ND}

CoViNE-Fast in action

E

D

M

N

O

L

KJ
H

I

G

F

B

A

C

x

y z

 Iteration for z

 Location (z) = {N, M, L, O}

 Compute minimum cost
substrate paths from N

 P(xz) ={NL-LJ-JI}

 P(xz)’={IN}

 P(yz) ={NM-MD}

 If N yields minimum cost

 Map z to N

 Map yz, xz, and (xz)’

 M(yz) = {NM-MD}

 M(xz) = {NL-LJ-JI}

 M(xz)’ = {IN}

CoViNE-Fast in action

E

D

M

N

O

L

KJ
H

I

G

F

B

A

C

x

y z

CoViNE-Fast embedding

Outline

 Survivability in Virtual Network Embedding (VNE)

 Connectivity-aware Virtual Network Embedding (CoViNE)

 State of the art

 Solution approaches

 CoViNE-ILP

 CoViNE-Fast

 Evaluation

 Summary and future work

26

Evaluation

 Compared approaches

 CoViNE-ILP : ILP implementation using CPLEX

 CoViNE-FAST : C++ implementation

 Cutset-ILP : Optimal solution for single failure scenario *

 ViNE-ILP : Optimal solution for VN embedding **

 Embedding evaluation parameters

 Network size : 50 - 1000

 Link to node ratio : 1.2 - 4

 Survivability analysis

 3 traffic classes with different priorities

 Single and two-link failure scenarios

27

* E. Modiano et al., “Survivable lightpath routing: a new approach to the design of wdm-based networks,” IEEE JSAC, 2002.

** Y. Zhu et al., “Algorithms for assigning substrate network resources to virtual network components,” in IEEE INFOCOM, 2006.

Key Results

 CoViNE-FAST allocates ~10%, ~15%, and 18% more bandwidth

than CoViNE-ILP, Cutset-ILP, and ViNE-ILP, respectively
 2 to 3 orders of magnitude faster than ILP counterparts
 Scalable to thousand-node topologies, not possible by ILP

 Two-Link link failure survivability requires ~30% more bandwidth

than that for single failures
 Embedding cost of parallel virtual links dominates in sparse VNs

 Satisfying disjointedness constraints dominates otherwise

 Restores ~100% bandwidth for the highest priority traffic
 Penalizes lower priority traffic

 Restored bandwidth by ViNE-ILP is worst due to VN partitioning

28

Outline

 Survivability in Virtual Network Embedding (VNE)

 Connectivity-aware Virtual Network Embedding (CoViNE)

 State of the art

 Solution approaches

 CoViNE-ILP

 CoViNE-Fast

 Evaluation

 Summary and future work

29

Summary

 Generic solutions to CoViNE for multiple substrate link failure

 Conflicting set abstracts the number of failures

 A heuristic algorithm to compute conflicting sets

 ILP formulation for CoViNE embedding

 A heuristic algorithm to reduce computational complexity

 Compared to the optimal, the heuristic algorithm

 Allocates ~15% extra resources on average

 Runs 2 to 3 orders of magnitude faster

 Scales to thousands of node topologies

30

Future Work

 Extend current solutions to consider

 Spare bandwidth allocation to guarantee bandwidth

 Node throughput constraints for better utilization

 Substrate paths length constraints to minimize delay

 Ensuring different levels of connectivity for different parts of

a heterogeneous VN

 Can empower a wide variety of Service Level agreements

 Explore possibility of multi-layer augmentation

31

Thank you
Questions?

32

Motivation

 A different form of survivability than traditional SVNE

 Requires no pre-allocated backup path, no path splitting

 SP reroutes traffic on the failed virtual links to alternate paths

 Based on traffic priority

 Thanks to Software Defined Networking (SDN) controller

 Connectivity is required to find alternate paths

 Applicable to VNs carrying best-effort traffic

 May tolerate small amount of delay

33

CoViNE-ILP Complexity
 Node mapping reduces to finding multiway separator in a graph

 Poly logarithmic approximation ratio*

 Link mappingextends Multi-Commodity Unsplittable Flow problem

 Best approximation ratio**:

 (7 + ) for line graphs

 (8 + ) for cycles

 Unknown for general graphs

 Disjointedness constraints per conflicting sets increase complexity

 Best approximation ratio: L
1

2 -,L is the number of links***

34

* Andersen, David G. "Theoretical approaches to node assignment." Computer Science Department (2002): 86.

** Bonsma, Paul, et al. "A Constant-Factor Approximation Algorithm for Unsplittable Flow on Paths." SIAM Journal on

Computing 43.2 (2014): 767-799.

*** Guruswami, Venkatesan, et al. "Near-optimal hardness results and approximation algorithms for edge-disjoint paths and

related problems." Journal of Computer and System Sciences 67.3 (2003): 473-496.

CoViNE-Fast Complexity
 Let

 N = Number of substrate nodes

 N‘ = Number of virtual nodes

 L = Number of substrate links

 L‘ = Number of virtual links

 σ = Maximum size of location constraint set of any virtual node

 δ = Maximum degree of a virtual node

 Per link mapping takes O(L + N log N) time*

 Per node mapping takes σ.δ.O(L + N log N) time

 Total running time becomes N‘.σ.δ.O(L + N log N)

35

* Fredman, Michael L., and Robert Endre Tarjan. "Fibonacci heaps and their uses in improved network optimization algorithms."

Journal of the ACM (JACM) 34.3 (1987): 596-615.

E

D

M

N

O

L

KJ
H

I

G

F

B

A

C

x

y z

 Sort virtual nodes on the
increasing order of the
conflict sets of incident links

 Iterate over virtual nodes in
this order

 Pick the most conflicted
node, x

 Iterate over the candidate
node of x

 Compute minimum cost
substrate paths for each
virtual link incident to x

 Map x to the candidate
node yielding minimum cost

 Map a virtual link to its
computed path only when
both endpoints are
mapped

CoViNE-Fast algorithm

