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Virtual Network Embedding

 A virtual network (VN) is a collection of 

virtual nodes and virtual links

 Embedded on a substrate network (SN)

 A virtual node is hosted on a substrate 

node

 Multiple virtual nodes can coexist

 A virtual link spans over a substrate path

 Link capacities are not exceeded
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Survivability in VNE (SVNE)
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Survivability in VNE (SVNE)
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 Limitations of traditional SVNE

 Requires pre-allocated backup path 

disjoint from the primary path

 Wastage of expensive resources

 Sharing of backup path possible

 Sacrifices level of survivability

 Cannot survive arbitrary failure 

scenarios

 Multiple substrate link failures
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Connectivity-aware VNE (CoViNE)
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 A weaker form of survivability

 Guarantees connectivity of a VN

 Less backup resource needed

 Computes alternate path upon failure

 Traffic is rerouted based on priority 

thanks to SDN controller

 Suitable for carrying best-effort traffic

 Tolerates small amount of delay
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CoViNE Key Question
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How to resource efficiently embed a 

VN while ensuring connectivity under 

multiple (k) substrate link failures?
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Problem Statement

 Decomposed sub-problems

 Augment the VN to make it k + 1 edge connected

 k + 1 edge-disjoint virtual paths exist between each pair of 
virtual nodes*

 Identify sets of virtual links to be embedded disjointedly

 Ensures k + 1 edge-disjoint paths between each pair of virtual 
nodes in the embedding

 Embed the augmented VN onto SN 

 Adheres to disjointedness constraints while minimizing total cost 
of embedding
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* Menger’s theorem: https://en.wikipedia.org/wiki/Menger%27s_theorem
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State of the Art
 Not studied in network virtualization context

 A special case in IP-over-WDM network literature for IP connectivity

 Do not consider node embedding
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Approach Limitation

Cut-set based approach * Only applicable to k=1, not scalable

Survivable Mapping Algorithm by 

Ring Trimming**

Fails to deal with arbitrary topology 

and multiple failures

Logical topology augmentation for 

guaranteed survivability***

Generates large number of 

disjointedness constraints

* E. Modiano et al., “Survivable lightpath routing: a new approach to the design of wdm-based networks,” IEEE JSAC, 2002.

** M. Kurant et al., “Survivable mapping algorithm by ring trimming (smart) for large ip-over-wdm networks,” in BroadNets, 2004.

*** K. Thulasiraman et al., “Logical topology augmentation for guaranteed survivability under multiple failures in ip-over-wdm

optical  networks,” Optical Switching and Networking, vol. 7, no. 4, pp. 206–214, 2010.
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Conflicting Set Abstraction 

 Two virtual links are conflicting if 

they must be embedded on 

disjoint paths

 Conflicting set is a function of k

 Set of links conflicting with a given link

 xy, yz, and zx are conflicting with 

each other for k=1

 Conflicting set of xy = {yz, zx}
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Computing Conflicting Sets

 Computing the optimal conflicting sets for 

all virtual links in a VN is NP-complete

 Reduction from Minimum Vertex Coloring

 A heuristic algorithm to compute 

conflicting set of a link, ab

 For two endpoints of ab, find k+1 edge-

disjoint paths in the VN

 ab is conflicting with each link in other k paths

 A link in an edge-disjoint path is conflicting 

with each link in all other paths

 O(N2) conflicting set computations!

 Can be reduced to O(N)
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p2 = {ac, bc}
p3 = {ad, db}
Conflict set of ab = 
{ac, bc, ad, db}
Conflict set of ac = 
{ab, ad, db}
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Computing Conflicting Sets (cont.)

 Incremental k+1 edge-connected sub-

graph construction

 Start with a sub-graph G of the VN 

containing a randomly chosen node

 Repeat until all nodes are added to G
 Select a node, v adjacent to a node in G

 Find k+1 edge-disjoint paths from G to v

 For all links in these paths, update 

conflicting sets

 Add v to G

 Incremental sub-graph construction yields 

smaller conflicting sets 

 Only considers links in an MST of the VN!
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3 edge-connected sub-graph 
(a, b) and Virtual Link ad

p1 = {ad}
p2 = {bd}
p3 = {ac, cd}
Conflict set of ad = 
{…, bd, ac, cd}
No need to compute for bd!



VN Augmentation
 Augmentation of VNs with less than k+1 edge connectivity

 Add max(0, k+1-m) parallel virtual links between a k+1 edge-connected 

sub-graph, G and a virtual node, v not in G

 m is the number of edge-disjoint paths from G to v

 Does not change pairwise connectivity patterns of the virtual nodes
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CoViNE-ILP
 An integer linear programming formulation for embedding a VN

 Minimize total bandwidth cost

 c(l): cost of unit bandwidth on substrate link l

 b: bandwidth demand of virtual link l’

 Pl’: substrate path on which l’ is embedded

 E’ : set of virtual links

 Constraints

 Node mapping satisfies location constraints

 A virtual link is only mapped to a single substrate path

 Link mapping adheres to disjointedness constraints

 No over commitment of substrate resource capacity
20



CoViNE-Fast 

 Fast and scalable heuristic algorithm 

 Node mapping

 Minimizes total cost of mapping incident virtual links

 Adheres to given location constraints of virtual nodes

 Maps virtual nodes to substrate nodes in a greedy manner

 Link mapping

 Minimizes cost of mapped substrate path

 Satisfies disjointedness constraints

 Based on the constrained minimum cost path first algorithm

 Modified version of Dijkstra’s shortest path algorithm

 Node and link mapping in a coordinated manner   
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 Iteration for x

 Location (x) = {H, I, J, G}

 Compute minimum cost 

substrate paths from H

 P(xy) ={HI-ID}

 P(xy)’ ={HJ-JI-IN-ND}

 P(xz) ={HG-GI-IN}

 P(xz)’ ={HJ-JL-LN}

 Compute similarly for I, J, G

 Let, I yields minimum cost

 Map x to I

CoViNE-Fast in action
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 Iteration for y

 Location (y) = {C, D, E, A, B}

 Compute minimum cost 

substrate paths from C

 P(xy) ={CD-DI}

 P(xy)’={CE-EI}

 P(yz) ={CA-AM}

 If D yields minimum cost

 Map y to D

 Map xy and (xy)’

 M(xy) = {ID}

 M(xy)’ = {IN, ND}

CoViNE-Fast in action
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 Iteration for z

 Location (z) = {N, M, L, O}

 Compute minimum cost 
substrate paths from N

 P(xz) ={NL-LJ-JI}

 P(xz)’={IN}

 P(yz) ={NM-MD}

 If N yields minimum cost

 Map z to N

 Map yz, xz, and (xz)’

 M(yz) = {NM-MD}

 M(xz) = {NL-LJ-JI}

 M(xz)’ = {IN}

CoViNE-Fast in action
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Evaluation

 Compared approaches

 CoViNE-ILP : ILP implementation using CPLEX

 CoViNE-FAST : C++ implementation

 Cutset-ILP : Optimal solution for single failure scenario *

 ViNE-ILP : Optimal solution for VN embedding **

 Embedding evaluation parameters

 Network size : 50 - 1000

 Link to node ratio : 1.2 - 4

 Survivability analysis

 3 traffic classes with different priorities

 Single and two-link failure scenarios
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* E. Modiano et al., “Survivable lightpath routing: a new approach to the design of wdm-based networks,” IEEE JSAC, 2002.

** Y. Zhu et al., “Algorithms for assigning substrate network resources to virtual network components,” in IEEE INFOCOM, 2006.



Key Results

 CoViNE-FAST allocates ~10%, ~15%, and 18% more bandwidth 

than CoViNE-ILP, Cutset-ILP, and ViNE-ILP, respectively
 2 to 3 orders of magnitude faster than ILP counterparts
 Scalable to thousand-node topologies, not possible by ILP

 Two-Link link failure survivability requires ~30% more bandwidth 

than that for single failures
 Embedding cost of parallel virtual links dominates in sparse VNs 

 Satisfying disjointedness constraints dominates otherwise

 Restores ~100% bandwidth for the highest priority traffic
 Penalizes lower priority traffic

 Restored bandwidth by ViNE-ILP is worst due to VN partitioning
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Summary

 Generic solutions to CoViNE for multiple substrate link failure

 Conflicting set abstracts the number of failures

 A heuristic algorithm  to compute conflicting sets 

 ILP formulation for CoViNE embedding 

 A heuristic algorithm to reduce computational complexity

 Compared to the optimal, the heuristic algorithm 

 Allocates ~15% extra resources on average

 Runs 2 to 3 orders of magnitude faster

 Scales to thousands of node topologies
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Future Work

 Extend current solutions to consider

 Spare bandwidth allocation to guarantee bandwidth

 Node throughput constraints for better utilization

 Substrate paths length constraints to minimize delay

 Ensuring different levels of connectivity for different parts of 

a heterogeneous VN

 Can empower a wide variety of Service Level agreements

 Explore possibility of multi-layer augmentation

31



Thank you
Questions?
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Motivation

 A different form of survivability than traditional SVNE

 Requires no pre-allocated backup path, no path splitting 

 SP reroutes traffic on the failed virtual links to alternate paths

 Based on traffic priority

 Thanks to Software Defined Networking (SDN) controller

 Connectivity is required to find alternate paths

 Applicable to VNs carrying best-effort traffic

 May tolerate small amount of delay 
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CoViNE-ILP Complexity
 Node mapping reduces to finding multiway separator in a graph

 Poly logarithmic approximation ratio*

 Link mappingextends Multi-Commodity Unsplittable Flow problem 

 Best approximation ratio**:

 (7 + ) for line graphs

 (8 + ) for cycles

 Unknown for general graphs

 Disjointedness constraints per conflicting sets increase complexity

 Best approximation ratio: L
1

2 -,L is the number of links***
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* Andersen, David G. "Theoretical approaches to node assignment." Computer Science Department (2002): 86.

** Bonsma, Paul, et al. "A Constant-Factor Approximation Algorithm for Unsplittable Flow on Paths." SIAM Journal on 

Computing 43.2 (2014): 767-799.

*** Guruswami, Venkatesan, et al. "Near-optimal hardness results and approximation algorithms for edge-disjoint paths and 

related problems." Journal of Computer and System Sciences 67.3 (2003): 473-496.



CoViNE-Fast Complexity
 Let

 N = Number of substrate nodes

 N‘ = Number of virtual nodes

 L = Number of substrate links

 L‘ = Number of virtual links

 σ = Maximum size of location constraint set of any virtual node

 δ = Maximum degree of a virtual node

 Per link mapping takes O(L + N log N ) time*

 Per node mapping takes σ.δ.O(L + N log N ) time

 Total running time becomes N‘.σ.δ.O(L + N log N )
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* Fredman, Michael L., and Robert Endre Tarjan. "Fibonacci heaps and their uses in improved network optimization algorithms." 

Journal of the ACM (JACM) 34.3 (1987): 596-615.
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 Sort virtual nodes on the 
increasing order of the 
conflict sets of incident links

 Iterate over virtual nodes in 
this order

 Pick the most conflicted 
node, x

 Iterate over the candidate 
node of x

 Compute minimum cost 
substrate paths for each 
virtual link incident to x

 Map x to the candidate 
node yielding minimum cost

 Map a virtual link to its 
computed path only when 
both endpoints are 
mapped

CoViNE-Fast algorithm


