
NeuRoute: Predictive Dynamic Routing for
Software-Defined Networks

Abdelhadi Azzouni1, Raouf Boutaba2, and Guy Pujolle1

1LIP6 / UPMC; Paris, France {abdelhadi.azzouni,guy.pujolle}@lip6.fr
2University of Waterloo; Waterloo, ON, Canada rboutaba@uwaterloo.ca

Abstract—This paper introduces NeuRoute, a dynamic routing
framework for Software Defined Networks (SDN) entirely based
on machine learning, specifically, Neural Networks. Current
SDN/OpenFlow controllers use a default routing based on Dijk-
stra’s algorithm for shortest paths, and provide APIs to develop
custom routing applications. NeuRoute is a controller-agnostic
dynamic routing framework that (i) predicts traffic matrix in
real time, (ii) uses a neural network to learn traffic characteristics
and (iii) generates forwarding rules accordingly to optimize the
network throughput. NeuRoute achieves the same results as
the most efficient dynamic routing heuristic but in much less
execution time.

keywords - Routing, Machine Learning, Neural Networks,

Software Defined Networking, Self Organizing Networks.

I. INTRODUCTION

The modern Internet is experiencing an explosion of the

Machine-to-Machine (M2M) communications and Internet-

of-Things (IoT) applications, in addition to other bandwidth

intensive applications such as voice over IP (VoIP), video

conferencing and video streaming services. Thus leading to a

high pressure on carrier operators to increase their network

capacity in order to support all these applications with an

acceptable Quality of Service (QoS). The common practice

to ensure a good QoS so far is to over-provision network

resources. Operators over-provision a network so that capacity

is based on peak traffic load estimates. Although this approach

is simple for networks with predictable peak loads, it is not

economically justified in the long-term.

In addition, most ISP networks today use Shortest Path

First (SPF) routing algorithms, namely the Open Shortest Path

First (OSPF) [1]. OSPF routes packets statically by assigning

weights to links hence the routing tables are recalculated only

when a topology change occurs. OSPF is a best effort routing

protocol, meaning that when a packet experiences congestion,

the routing subsystem cannot send it through an alternate path,

thus failing to provide desired QoS during congestion even

when the total traffic load is not particularly high.

Although OSPF has a QoS extension [2] that dynamically

changes link weights based on measured traffic, it is still

not implemented in the Internet for two major reasons. First,

changing the cost of a link in one part of the network may

cause a lot of routing updates and in turn negatively affect

traffic in a completely different part of the network. This can

be disruptive to many (or all) traffic flows. Another problem

concerns routing loops that may occur before the routing

protocol converges. Therefore, in networks with distributed

control plane, changing the link cost is considered just as

disruptive as link-failures. On the other hand, without the pos-

sibility to differentiate between traffic flows more granularly

(not only based on destination IP address), dynamic routing

cannot positively contribute to load balancing [3].

The dynamic routing problem, also known as QoS routing

or concurrent flow routing, is a case of Multi-commodity

flow problem where flows are packets or traffic flows and the

goal is to maximize the total network flow while respecting

routing constraints such as load balancing the total network

traffic or minimizing the traffic delay. Due to their high

computational complexity, multi-commodity flow algorithms

are rarely implemented in practice.

There are many variants of the dynamic routing problem

including the maximum throughput dynamic routing, the maxi-

mum throughput minimum cost dynamic routing and the maxi-

mum throughput minimum cost multicast dynamic routing. In

this work, we focus on the maximum throughput minimum

cost unicast dynamic routing where given a traffic demand

matrix, the objective is to maximize the total throughput of the

network while minimizing the cost of routing the total traffic

knowing that each flow can be routed through only one end-

to-end path. We present NeuRoute, a Neural Network based

hyperheuristic that is capable of computing dynamic paths in

real time. NeuRoute learns from a dynamic routing algorithm

then imitates it achieving the same results but in only 25%

of its execution time. The basic motivation behind NeuRoute

is that dynamic routing using traditional algorithmic solutions

is not practical due to their high computational complexity.

That is, at every execution round the routing algorithm uses

measured link loads as input and performs a graph search to

find the near optimal paths.

The main contributions of this paper are summarized as

follows: (i) We introduce for the first time an integral routing

system based on machine learning and detail its architecture,

(ii) we detail the design of the neural network responsible for

matching traffic demands to routing paths and (iii) we evaluate

our proposal against an efficient dynamic routing heuristic and

show our solution’s superiority.

The remainder of this paper is organized as follows: Section

II formally states the dynamic routing problem and discusses

its most prominent heuristic solutions. Section III details

NeuRoute design. In section IV, we evaluate NeuRoute on real

978-3-901882-98-2 c© 2017 IFIP

world network data and topology. We discuss related work in

section V and we conclude the paper in section VI

II. THE DYNAMIC ROUTING PROBLEM

In this section, we formulate the maximum throughput

minimum cost dynamic routing problem (MT-MC-DRP) as

a linear program, and then prove its NP-completeness. The

problem is equivalent to the known Unsplittable Constrained

Multicommodity Max-Flow-Min-Cost problem. We want to

find routes for multiple unicast flows which maximize the

aggregate flow in a graph, while minimizing the routing-cost.

By focusing on unsplittable multicommodity flow we exclude

multipath routing where a flow can be split and routed through

multiple end-to-end paths.

We consider a software-defined network G(V, L), where V
is the set of SDN-enabled switch nodes, and L is the set

of links that connect the switches where each link li,j has a

capacity C(l). Each unicast flow f has source and destination

nodes denoted sf and df respectively, a requested traffic rate

Rf and a minimum necessary traffic rate Nf . Let rfin(v)
and rfout(v) denote the aggregate flow rate into/out of node

v due to flow f , respectively. The traffic rate related to flow

f and flowing through link l is denoted by rf (l). Each link

has a routing cost denoted by Θ(l) that can represent any

linear function of the traffic flowing on it , i.e., delay, jitter,

congestion probability or reliability. We define an Admissible

Routing as an assignment of flows to the links in G, such

that no capacity constraints are violated, and flow-conservation

applies at every node. The MT-MC-DRP problem can be stated

as follows: Does there exist an admissible routing for the

flows, where each flow receives its requested rate Rf while

the total routing cost is minimized?

A. MT-MC-DRP As Two Linear Problems

We formulate MT-MC-DRP as a succession of two linear

problems (LPs): A Constrained-Maximum-Flow LP (CMaxF-

LP) and a Constrained-Minimum-Cost LP (CMinC-LP).

1) CMaxF-LP:

maximize(
∑

f∈F

rfin(df)) (1)

subject to:

rf (l) ≥ 0 ∀f ∈ F, ∀l ∈ Lf (2)

rf (l) ≤ C(l) ∀f ∈ F, ∀l ∈ Lf (3)
∑

f∈F

rf (l) ≤ C(l) ∀l ∈ L (4)

rfin(v) = rfout(v) ∀f ∈ F, ∀v ∈ V f − {sf , df} (5)

rfin(sf) = 0 ∀f ∈ F (6)

rfout(df) = 0 ∀f ∈ F (7)

rfout(sf) ≤ Rf ∀f ∈ F (8)

rfout(sf) ≥ Nf ∀f ∈ F (9)

2) CMinC-LP:

minimize(
∑

f∈F

∑

l∈L

rf (l)×Θ(l)) (10)

subject to:

rfout(sf) = Πf + /− ε ∀f ∈ F, ∀l ∈ Lf (11)
∑

f∈F

rf (l) ≤ C(l) ∀l ∈ L (12)

rfin(v) = rfout(v) ∀f ∈ F, ∀v ∈ V ′ (13)

rfin(sf) = 0 ∀f ∈ F (14)

rfout(df) = 0 ∀f ∈ F (15)

Theorem. The Maximum Throughput Minimum Cost

Dynamic Routing Problem as presented above is NP-hard.

Proof. refer to [5] [9] �

B. Heuristic Solution for The MT-MC-DRP

Due to its NP-completeness, an exact solution for the MT-

MC-DRP as defined above is not practical to be implemented

in the network controller. It is more practical to design an

approximate but fast solution. Therefore, a major research

effort was put into designing efficient fully polynomial-time

approximation schemes (FPTAS) for multicommodity flow

problems including max flow min cost multicommodity prob-

lem. A fully polynomial-time approximation scheme for a flow

maximization problem is an algorithm that, given an accuracy

parameter ε > 0, computes, in polynomial time in the size of

the input and 1/ε, a solution with an objective value within a

factor of (1− ε) of the optimal one [6]. The multicommodity

problem literature has a rich body of work providing FPTASes.

In this work, we use the novel method proposed in [6] as a

baseline heuristic to solve the MT-MC-DRP. We also refer to

the same paper for more literature on other existing heuristics.

III. SYSTEM DESIGN

As shown in figure 1, NeuRoute is designed as an inte-

gral routing application for the SDN controller. NeuRoute is

composed of three key components: a Traffic Matrix Estimator

(TME), a Traffic Matrix Predictor (TMP) and a Traffic Routing

Unit (TRU). In this paper focus on and detail the TRU but

also describe briefly the two other components for the sake of

completeness.

A. Traffic Matrix Estimator

As mentioned earlier,detailed design of the traffic matrix

(TM) estimator is out of the scope of this paper. Here we only

motivate the need for a traffic matrix estimator and define its

interfaces with the rest of NeuRoute components.

A network TM presents the traffic volume between all

pairs of origin-destination (OD) nodes of the network at a

certain time t. The nodes in a traffic matrix can be Points-

of-Presence (PoPs), switches, routers or links. In OpenFlow

SDNs, the controller leverages packet in messages to build a

Fig. 1: NeuRoute architecture

global view of the network. When a new flow arrives to a

switch, it is matched against forwarding rules to determine

a forwarding path for it. If the flow does not match any

rule, the switch forwards the first packet or only the packet

header to the controller. In addition, the controller can query

switches for packet counts that track the number of packets

and bytes handled by the switch. However, the number of

packet in and the number of controller queries, necessary

for a near real-time measurement, increases rapidly with a

large number of switches and flows, making this measurement

mechanism not practical. Also, there is a chance that by the

time the controller receives the message, the values of the

counters become out of date and do not reflect the near real-

time state of the switch anymore. These and a number of

other issues listed in [12] call for an efficient measurement

mechanism to capture traffic matrix in near real-time. In its

current implementation, NeuRoute uses a variant of a recent

proposal called openMeasure [13] to estimate traffic matrix.

B. Traffic Matrix Predictor

Network Traffic Matrix prediction refers to the problem of

estimating future network traffic from the past and current

network traffic data. Internet traffic is known to be self-

similar enabling it to be predictable with high accuracy [10].

NeuRoute’s Traffic Matrix Predictor (TMP) uses a Long

Short Term Memory Recurrent Neural Network (LSTM-RNN)

described in [7]. Figure 2 shows the sliding prediction window

where at each time instant t, the TMP takes a fixed size set of

achieved traffic matrices as input and outputs the traffic matrix

of time instant t+ 1
Prediction using NNs involves two phases: a) the training

phase and b) the test (prediction) phase. During the training

phase, the NN is supervised to learn from the data by pre-

senting the training data at the input layer and dynamically

adjusting the parameters of the NN to achieve the desired

output value for the input set. The most commonly used

learning algorithm to train NNs is called the backpropagation

algorithm. The underlying idea is to propagate the error

Fig. 2: Traffic Matrix Prediction Over Time

backward, from the output to the input, where the weights are

changed continuously until the output error falls below a preset

value. In this way, the NN learns correlated patterns between

input sets and the corresponding target values. The prediction

phase represents the testing of the NN. A new unseen input

is presented to the NN and the output is calculated, thereby

predicting the outcome of new input data.

C. Traffic Routing Unit

The core component of the NeuRoute system is the Traffic

Routing Unit (TRU) which is responsible of selecting optimal

routes based on the predicted traffic matrix. TRU is based on

the supervised learning approach where an agent is trained

to infer a function from labeled training data. It consists of

a Deep Feed Forward Neural Network that learns to match

traffic demands to routing paths by observing the output of

a heuristic, that we call the Baseline Heuristic (BH). In this

paper we present our experimentations with a BH that is built

following the algorithm discussed in section II-B.

To bootstrap, only the TME is activated to continuously

provide the BH with timely estimated traffic matrices. Copies

of these estimated traffic matrices are stored to be used later

on by the TMP and the TRU. NeuRoute collects the output

of the BH for a period of time that can be configured based

on the desired performance. Once enough BH-output data is

gathered, NeuRoute’s components, TMP and TRU, are fired

up. The TMP uses the stored history of estimated traffic

matrices to predict the future traffic matrix, continuously as

detailed in [7]. On the other hand, the TRU takes the BH

output data and the stored history of estimated traffic matrices

along with corresponding Network States (NSs) as input to

train its routing neural network. Each tuple (NS+traffic matrix,

BH output) constitutes one learning sample for the TRU. NS
at a time instant t (or NSt) is the set of all links available

capacities and links costs at time instant t (links costs usually

do not change frequently). Once the learning phase is done

(within a few seconds to a few minutes depending on the

volume of data and desired performance), the trained model

is fired up to route new traffic flows. The reason why we

predict the traffic matrix is that the real-time measurement of

traffic matrix is not practical and by the time the controller gets

the measured information, the flows to be routed are already

on their way on the existing paths, before even the controller

computes the new paths. In the following, we detail the design

elements and the design challenges of TRU.

1) Deep Feed Forward Neural Networks: Deep neural

networks are currently the most successful machine learning

technique for solving a variety of tasks including language

translation, image classification and image generation. TRU is

similar to an image classifier that has a set of images in input

and tries to find a function that matches these images to a

set of classes. In the routing case, the traffic matrices are the

images and the routing paths represent the output classes. The

deep neural network used in TRU is presented in figure 3. It

takes a traffic matrix and an NS instance as input and matches

them to a set of paths as output.

Fig. 3: Deep Feed Forward Neural Network

In a deep feed forward network, the information flows only

forward through the network from the input nodes, through

the hidden nodes to the output nodes, with no cycles or

loops. Each node has an activation function which acts like

a threshold for the node to fire up: A node n produces a value

for its output nodes only if the weighted sum of the input

values of n is equal or exceeds the threshold. Each edge has

a weight and permits transfer of value from node to node.

Learning Algorithm. We use the Backpropagation learn-

ing algorithm that was first introduced in the 70s and now is

the most widely used algorithm for supervised learning in deep

feed-forward networks. The goal is to make the network learn

some target function, in our case, matching traffic matrices to

routing paths. The basic idea of the algorithm is to look for the

minimum of the error function in weight space by repeatedly

applying the chain rule to compute the influence of each

weight in the network with respect to the error function: The

output values of the network are compared with the learning

sample (correct answer) to compute the value of the error

function. The calculated error is then fed back through the

network and used to adjust the weights of each connection in

order to reduce the value of the error function by some small

amount. After repeating this process for a sufficiently large

number of training cycles, the network will usually converge

to some state where the error is small enough. In other words,

we say that the network has learned the target function to some

extend. We refer to [14] for more details about the algorithm.

Optimization Algorithm. In this work, we use Adam

(short for Adaptive Moment Estimation) optimizer, one of the

most adopted optimization algorithms among deep learning

practitioners for applications in computer vision and natural

language processing. Adam optimizer is an improvement of

the gradient descent algorithm that can yield quicker conver-

gence in training deep networks [15].

Learning Rate. The learning rate determines how quickly

or how slowly we want the network weights to be updated

(by the backpropagation algorithm). In other words, how

quickly or how slowly we want the network to forget learned

features and learn new ones. Picking a learning rate is problem

dependent since the optimum learning rate can differ based

on a number of parameters including epoch size, number of

learning iterations, number of hidden layers and/or neurons

and number and format of the inputs. Trial and error is often

used in order to determine the ideal learning condition for

each problem studied. We describe our empirical approach for

choosing the learning rate in the implementation section IV.

2) Input Pre-Processing and Normalization: The input

(NS+traffic matrix) are merged into one single vector of

numbers then normalized by dividing all numbers by the

greatest number. The result is a vector of numbers ranging

between 0 and 1. This normalization is a good practice that

can make training faster and reduce the chance of getting stuck

in local optima [8].

3) Routing Over Time: At each time instant t, the TRU’s

trained model takes predicted traffic matrix of time instant

t + 1 (TMt+1) and corresponding NS as input. The model

function is applied and the output is a set of path probabilities

where the highest value indicates the best routing path. TRU

then sends the chosen path to the controller in order to be

installed in switches as flow rules. By the time t + 1, when

the flows arrive, the forwarding rules are already installed

which minimizes considerably the network delay.

Matching traffic matrices and network states to routing paths

is similar to classifying a stream of frames in a video, witch

is not a common and well studied problem since the usual

image classification is applied to individual images. Besides

tweaking the neural network architecture and parameters to

obtain a high classification performance, there are two unique

challenges that arise in our problem:

• The runtime performance of the trained model is critical

and needs to be optimized to perform continuous routing

over time. We achieve high performance by keeping the

predicted traffic matrices in memory before feeding them

to the LRU’s neural network.

• Unlike images and videos, there is no camera bias in

traffic matrices (Camera bias refers to the fact that in

many images and videos, the object of interest often

occupies the center region), hence it is not possible to

work around resolutions to optimize training time as it

was done in [11].

IV. IMPLEMENTATION AND EVALUATION

We implemented NeuRoute as a routing application on

top of POX controller [18]. The TRU’s neural network is

implemented using Keras library [19] on top of Google’s Ten-

sorFlow machine learning framework [20]. We have chosen the

GÉANT network topology for our testbed as GÉANT’s traffic

matrices are already available online [21]. We implemented

the GÉANT topology (shown in figure 4) as an SDN network

using Mininet [22] setting link capacities at 10Mbps. We use

link delay as the cost function with 2ms delay per link.

Fig. 4: GÉANT2 Network Topology [23]

Data generation. In order to generate the learning data, we

applied the BH on the testbed described above with GÉANT’s

traffic matrices as input. We obtained a data set of 10000

samples (traffic matrix+network state, near optimal path) that

we split to training data set of 7000 samples and test data set

of 3000 samples.

The neural network architecture. Determining the neural

network architecture is problem dependent, hence we adopted

an empirical approach to determine the number of hidden

layers and the size of each hidden layer. We measured the

training time and the learning performance (GÉANT traffic

matrices + related network states as input and the results of

the BH as output) for different numbers of hidden layers and

different hidden layer sizes. This allowed us to pick an optimal

number of hidden layers of 6 with 100 nodes per hidden layer.

Note that we choose the architecture parameters based on the

measured learning performance, and we stop experimenting

when the training time becomes too long.

(a) MSE over number of hidden layers (b) Training time over number of
hidden layers

Fig. 5: Picking the number of hidden layers

Figure 5a depicts the measured Mean Squared Error (MSE)

over different numbers of hidden layers. The MSE diminishes

at high numbers of hidden layers (deep network) but figure

5b shows that the deeper is the network the longer it takes to

train it. To select a good compromise, we fix the training time

to 2 minutes. This training time corresponds to a depth of 6

hidden layers.

(a) MSE over number of hidden
nodes

(b) Training time over number of
hidden nodes

Fig. 6: Picking the number of hidden nodes

Similarly, figure 6a shows that the MSE diminishes at higher

network sizes but the training time goes up as figure 6b shows.

We fix again the training time to 2 minutes and obtain the

corresponding hidden nodes number of 600, or 100 nodes per

hidden layer. Note that a 2 minutes training time is not too

long but is chosen proportionally to the size of the data set.

Larger data sets may take hours or days to train.

Data preparation. We prepared the input data as follows:

we split the total learning data into batches of size 100 each.

Each input sample is a vector of size 506 + 38 = 544, 506

being the size of a vector representing one traffic matrix of

23 nodes (23*22) and 38 being the number of links in the

GÉANT topology, which is equal to the size of one network

state vector. The output vector is of size 23 ∗ 22 ∗ 5 with

23*22 being the number of origin-destination (OD) pairs and

we arbitrarily fix the number of possible paths per OD pair to

6.

The learning rate. Like the neural network’s architecture,

the learning rate is problem dependent. Our approach is to start

with a high value and go down to lower values, recording the

learning performance and training time for every learning rate

value.

Fig. 7: Accuracy over different learning rate values

Figure 7 depicts the MSE variation over different learning

rate values. The training time does not change for different

learning rates (5s per epoch).

The overfitting problem. Overfitting is a serious problem

that occurs when training a neural network on limited data.

It happens when a model learns the detail and noise in

the training data to the extent that it negatively impacts its

performance on new data. This means that the noise or random

fluctuations in the training data is picked up and learned as

features by the model. The problem is that these features

do not apply to new data and negatively impact the model’s

ability to generalize. Various methods have been proposed to

avoid or reduce overfitting, including stopping the training as

soon as performance on a validation set starts to get worse,

introducing weight penalties of various kinds such as L1

and L2 regularization and Dropout [24]. In this work, we

chose to use the Dropout technique due to its simplicity and

effectiveness [24]. Dropout is a technique that addresses both

these issues. Dropout is a technique where randomly selected

neurons are are dropped-out (or ignored) during training and

their contribution to the activation of the downstream neurons

is temporally removed. Also, the weight updates are not

applied to the dropped-out neurons on the backward pass.

The effect on the network is that it becomes less sensitive

to the specific weights of neurons which results in a better

generalization [24] [25].

Evaluation of TRU. Finally, we applied the trained model

on the test data and recorded the accuracy (number of correctly

chosen paths from the test set) over number of training epochs

in figure 8. One epoch is a one complete training pass over

the whole training data set where each epoch takes roughly

2s to complete. Figure 8 shows that the model picks the near

optimal path learned from the BH with an estimated error

of less than 0.05% when trained well (3min of training is

enough to reach this error rate). Furthermore, the trained model

executes and finds the near optimal path in 30ms compared to

the BH execution time of 120ms.

Fig. 8: MSE over number of training epochs

V. RELATED WORK

The authors of paper [17] propose a machine learning meta-

layer composed of multiple modules. Each module works

only for one OD pair. The proposed scheme is however not

practical since the number of OD pairs (hence the number

of neural networks associated) explodes in large networks.

Knowing that each neural network is trained separately and

each trained model operates separately, this approach does not

capture the relations between ODs requests that arrive at the

same time. It is also much more complicated to implement

and computationally expensive than our approach.

VI. CONCLUSION

In this paper, we introduced NeuRoute, a machine learning

based dynamic routing framework for SDN. NeuRoute learns

a routing algorithm and imitates it with higher performance.

We implemented NeuRoute as a routing application on top of

Pox Controller and performed proof of concept experiments

that showed our solution’s superiority compared to an efficient

dynamic routing heuristic. Experiments on larger data sets are

being conducted and will be presented in a future work along

with more details about the system.

REFERENCES

[1] Moy, John. ”OSPF version 2.” (1997).
[2] IETF. ”QoS Routing Mechanisms and OSPF Extensions”, RFC 2676,

Aug. 1999.
[3] Tomovic, Slavica, et al. ”A new approach to dynamic routing in

SDN networks.” Electrotechnical Conference (MELECON), 2016 18th
Mediterranean. IEEE, 2016.

[4] Szymanski, Ted H. ”Max-flow min-cost routing in a future-Internet with
improved QoS guarantees.” IEEE Transactions on Communications 61.4
(2013): 1485-1497.

[5] Hall, Alex, Steffen Hippler, and Martin Skutella. ”Multicommodity flows
over time: Efficient algorithms and complexity.” Theoretical Computer
Science 379.3 (2007): 387-404.

[6] Madry, Aleksander. ”Faster approximation schemes for fractional multi-
commodity flow problems via dynamic graph algorithms.” Proceedings
of the forty-second ACM symposium on Theory of computing. ACM,
2010.

[7] Azzouni, Abdelhadi, and Guy Pujolle. ”A Long Short-Term Memory
Recurrent Neural Network Framework for Network Traffic Matrix Pre-
diction.” arXiv preprint arXiv:1705.05690 (2017).

[8] Sola, J., and J. Sevilla. ”Importance of input data normalization for the
application of neural networks to complex industrial problems.” IEEE
Transactions on Nuclear Science 44.3 (1997): 1464-1468.

[9] Szymanski, Ted H. ”Max-flow min-cost routing in a future-Internet with
improved QoS guarantees.” IEEE Transactions on Communications 61.4
(2013): 1485-1497.

[10] Mansfield, Glenn, T. K. Roy, and Norio Shiratori. ”Self-similar and
fractal nature of Internet traffic data.” Information Networking, 2001.
Proceedings. 15th International Conference on. IEEE, 2001.

[11] Karpathy, Andrej, et al. ”Large-scale video classification with convolu-
tional neural networks.” Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition. 2014.

[12] Suh, Junho, et al. ”Opensample: A low-latency, sampling-based mea-
surement platform for commodity sdn.” Distributed Computing Systems
(ICDCS), 2014 IEEE 34th International Conference on. IEEE, 2014.

[13] Liu, Chang, AMehdi Malboubi, and Chen-Nee Chuah. ”OpenMeasure:
Adaptive flow measurement & inference with online learning in SDN.”
Computer Communications Workshops (INFOCOM WKSHPS), 2016
IEEE Conference on. IEEE, 2016.

[14] Demuth, Howard B., et al. Neural network design. Martin Hagan, 2014.
[15] Kingma, Diederik, and Jimmy Ba. ”Adam: A method for stochastic

optimization.” arXiv preprint arXiv:1412.6980 (2014).
[16] Kohavi, Ron. ”A study of cross-validation and bootstrap for accuracy

estimation and model selection.” Ijcai. Vol. 14. No. 2. 1995.
[17] Yanjun, Li, Li Xiaobo, and Yoshie Osamu. ”Traffic engineering frame-

work with machine learning based meta-layer in software-defined net-
works.” Network Infrastructure and Digital Content (IC-NIDC), 2014 4th
IEEE International Conference on. IEEE, 2014.

[18] The POX controller. https://github.com/noxrepo/pox.
[19] Keras Documentation. https://keras.io/
[20] Google TensorFlow. https://www.tensorflow.org/
[21] https://goo.gl/JD6t78
[22] http://mininet.org/
[23] Barreto, Fernando, Emlio CG Wille, and Luiz Nacamura Jr. ”Fast

emergency paths schema to overcome transient link failures in ospf
routing.” arXiv preprint arXiv:1204.2465 (2012).

[24] Srivastava, Nitish, et al. ”Dropout: a simple way to prevent neural
networks from overfitting.” Journal of machine learning research 15.1
(2014): 1929-1958.

[25] Jason Brownlee. Dropout Regularization in Deep Learning Models With
Keras. http://machinelearningmastery.com/dropout-regularization- deep-
learning-models-keras/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

