
Breaking Service Function Chains with Khaleesi

Sara Ayoubi,
Shihabur R. Chowdhury,

Raouf Boutaba

Service Function Chaining (SFC)

2

IDSFW LB

Network policies often require packets to traverse

an ordered set of Network Functions

Service chain for a Web Service

Probe Wan Opt. Shaper

Service chain in enterprise Data Center Networks

Service Function Chaining (SFC)

3

IDSFW LB

Network policies often require packets to traverse

an ordered set of Network Functions

Service chain for a Web Service

Probe Wan Opt. Shaper

Service chain in enterprise Data Center Networks

Traditionally, network functions have been realized by

hardware middleboxes

SFC Orchestration in NFV

4

Given

A set of SFC requests

A set of Physical Resources

(Servers, Switches, Links)

FWTA VO

IDSFW LB

SFC Orchestration in NFV

5

Given

A set of Physical Resources

(Servers, Switches, Links)

FWTA VO

IDSFW LB

Determine

Placement of NFs on Servers

Traffic Routing between VNFs

Objective: Minimize OPEX/
Energy Cost/Network B.W, or

Maximize Acceptance Ratio
etc.

A set of SFC requests

SFC Orchestration: State-of-the-art

6

O(100) research papers on the topic

In most cases, the SFC is considered rigid, i.e., traversal order of
the NFs cannot be modified at all

Minimization of energy, network bandwidth, SLO violation, etc.
Maximization of availability, acceptance ratio, etc.

Different aspects have been considered

7

Question:

Can we perform better resource allocation if we

break the traversal order in an SFC?

Illustrative Example

8

Probe

(2 CPU)
Wan Opt.

(3 CPU)

Shaper

(2 CPU)

Occupied CPU core

Available CPU core

Server - 1 Server - II

Resource Allocation for Rigid SFC

9

Probe

(2 CPU)
Wan Opt.

(3 CPU)

Shaper

(2 CPU)

Rigid SFC

Occupied CPU core

Available CPU core

Server - 1 Server - II

Resource Allocation for Flexible SFC

10

Probe

(2 CPU)
Wan Opt.

(3 CPU)

Shaper

(2 CPU)

Flexible SFC

(Probe and Wan Opt.

can be swapped)

50% less network hops

Occupied CPU core

Available CPU core

Server - 1 Server - II

More Questions

11

How can we tell if NF traversal order can
be broken?

How to exploit flexible SFCs in resource
allocation?

How much benefit can we get from
flexible SFCs?

Our Contributions

12

How can we tell if NF
traversal order can be broken?

How to exploit flexible SFCs in
resource allocation?

How much benefit can we get
from flexible SFCs?

Theoretical analysis for detecting
re-order compatible NFs

Khaleesi*: Suit of solutions for
SFC Orchestration, while breaking

NF traversal order

Empirical evaluation of benefits

*Character from the popular fantasy novel A Song of Ice and Fire (adapted as TV series Game of Thrones),
who is also known as the breaker-of-chains

Flexible SFC: State-of-the-art

13

Flexibility is part of input; does not
demonstrate any quantifiable

benefit.

Requires additional specialized
components

Language and Data Model1,2 NF Execution Parallelization3,4

1. S. Mehraghdam et al., “Placement of services with flexible structures specified by a yang data model,” IEEE NetSoft, 2016

2. S. Mehraghdam et al., “Specifying and placing chains of virtual network functions,” IEEE CloudNet, 2014

3. Y. Zhang et al., “Parabox: Exploiting parallelism for virtual network functions in service chaining,” ACM SOSR, 2017

4. C. Sun et al., “Nfp: Enabling network function parallelism in nfv,” ACM SIGCOMM, 2017

In our case

Flexibility is determined from NF properties for finding Optimal
Solution; empirically evaluated quantifiable benefits demonstrated

Flexible SFC: State-of-the-art

14

Flexibility is part of input; does not
demonstrate any quantifiable

benefit.

Requires additional specialized
components

Language and Data Model1,2 NF Execution Parallelization3,4

1. S. Mehraghdam et al., “Placement of services with flexible structures specified by a yang data model,” IEEE NetSoft, 2016

2. S. Mehraghdam et al., “Specifying and placing chains of virtual network functions,” IEEE CloudNet, 2014

3. Y. Zhang et al., “Parabox: Exploiting parallelism for virtual network functions in service chaining,” ACM SOSR, 2017

4. C. Sun et al., “Nfp: Enabling network function parallelism in nfv,” ACM SIGCOMM, 2017

In our case

Flexibility is determined from NF properties for finding Optimal
Solution; empirically evaluated quantifiable benefits demonstrated

How to determine re-order compatibility?

15

When swapping their order in an SFC results in
semantically equivalent SFCs

When is a pair of NFs re-order compatible?

What is semantic equivalence?

SFC-I SFC-II

Pin
Pout Pin

P’out

S1 S2 S3 S2’ S1’ S3’

SFC-I & SFC-II are semantically equivalent iff
P’out = Pout and (S1,S2,S3) =(S1’,S2’,S3’)

Conditions for Re-order Compatibility

16

Reads/Write Packet Headers  Interest fields

Update internal state based on packet header  State fields

NF Operation

involves:

Conditions for Re-order Compatibility

17

Two NFs are reorder compatible iff

Their state fields are disjoint and interest fields are either disjoint or read-only

Reads/Write Packet Headers  Interest fields

Update internal state based on packet header  State fields

NF Operation

involves:

Conditions for Re-order Compatibility

18

Two NFs are reorder compatible iff

Their state fields are disjoint and interest fields are either disjoint or read-only

Reads/Write Packet Headers  Interest fields

Update internal state based on packet header  State fields

NF Operation

involves:

Re-order compatibility matrix of commonly used enterprise NFs

Reorder Compatibility + SFC Orchestration

19

OPT-Khaleesi FAST-Khaleesi

ILP-based Optimal Solution

(NP-hard)

Greedy Heuristic

Khaleesi: A suit of solutions to Flexible SFC Orchestration

Re-order Compatibility + SFC Orchestration

= Flexible SFC Orchestration

Assumptions

20

Linear Chain of NFs (no branches)

No change of data rate after swapping

Heterogeneous servers

OPT-Khaleesi*

21

Augment the SFC with additional links according to re-order
compatibility matrix such that all valid chains can be traced

ILP selects the optimal set of virtual links to form a valid SFC and
performs joint NF placement and virtual link routing while minimizing

network bandwidth usage

* Details are in the paper

F1 F2 F3 F4

Reorder(F1,F2) = true

F1 F2 F3 F4

If F2 is swapped with F1 then

there can be a link from F1 to F3

OPT-Khaleesi*

22

Decision Variables

VNF Placement on Servers, Virtual Link Selection, Virtual Link Routing

Constraints

 Select exactly F - 1 virtual links (F = number of NFs)

 Selected virtual links should form a chain semantically equivalent to
the input

* Details are in the paper

FAST-Khaleesi: 4-Step Algorithm

23

Step-I: Generate all possible SFCs

Step-II: Find Candidate Servers

Step-III: Place VNFs on servers to minimize cross-
server traffic

Step-IV: Inter-server Routing

Step – I: SFC Generation

24

Augment edges according to

re-order compatibility matrix

DFS Traversal to generate all chains

…

Step – II: Determine Candidate Servers

25

II.1 Filter servers based on NF’s CPU requirement

II.2 Sort servers in decreasing order of R
Residual number of cores

Distance from ingress sw + Distance from egress sw

Prioritize servers with higher capacity and

proximity to the SFC’s ingress and egress nodes

R =

Step – III, IV: VNF Placement & Routing

26

III. I Traverse servers in decreasing order of R

III.2 Keep placing VNFs from the beginning of a

chain using first fit algorithm

III.3 Determine the number of cross server virtual

links

III.4 Pick placement with minimum number of

cross-server link

IV. Route virtual links between servers using Dijkstra’s algorithm

Evaluation: Setup

 Comparison scenarios
OPT-Khaleesi compared with optimal rigid SFC orchestration*

An existing heuristic* for rigid SFC orchestration fed with all possible chains

FAST-Khaleesi compared with OPT-Khaleesi

 Substrate network
 Small size campus data center (23 nodes, 42 links)

 Moderate size ISP network from RocketFuel (79 nodes, 147 links)

 SFC request
 3 – 6 NFs/request

 Poisson process (4 – 10 SFC/100 time unit avg., 1000 unit avg. lifetime)

 Both real and synthetic traffic matrix

27
* Bari, et al. “Orchestrating Virtualized Network Functions “, IEEE TNSM 13(4): 913-926, 2016.

Performance Highlights

28

Heuristic’s acceptance Ratio
within 20% of optimal on avg.

* Proof is in the paper



Performance Highlights

29

Heuristic’s acceptance Ratio
within 20% of optimal on avg.

* Proof is in the paper



Existing heuristic improves ~10%
on revenue/cost without

explicitly considering flexibility

~10% improvement in
revenue/unit cost



Summary

30

We make a case for having flexibility in SFC
traversal order

Two Solutions to Flexible SFC Orchestration:
Khaleesi, FAST-Khaleeis

Presented quantifiable benefits of flexible SFC
orchestration

What’s Next?

31

Can we exploit re-order compatibility during
failure restoration/re-optimization?

What is the impact on debugging and verification?

Can we automate middlebox characterization?

32

33

Backup Slide

FAST-Khaleesi: Complexity

34

𝑂(𝑁2𝑙𝑔𝑁 + 𝑆𝑁′𝐹2 + 𝑆(𝐿 + 𝑁𝑙𝑔𝑁)))

N = Number of switches

N’= Number of Servers

F = Number of NFs

S = Number of possible chains
(O(F!) in the worst case)

