A Look Behind the Curtain: Traffic Classification in an
Increasingly Encrypted Web

IMAN AKBARI, MOHAMMAD A. SALAHUDDIN, LENI VEN, NOURA LIMAM, and
RAOUF BOUTABA, University of Waterloo, Canada
BERTRAND MATHIEU, STEPHANIE MOTEAU, and STEPHANE TUFFIN, Orange Labs, France

Traffic classification is essential in network management for operations ranging from capacity planning,
performance monitoring, volumetry, and resource provisioning, to anomaly detection and security. Recently,
it has become increasingly challenging with the widespread adoption of encryption in the Internet, e.g.,
as a de-facto in HTTP/2 and QUIC protocols. In the current state of encrypted traffic classification using
Deep Learning (DL), we identify fundamental issues in the way it is typically approached. For instance,
although complex DL models with millions of parameters are being used, these models implement a relatively
simple logic based on certain header fields of the TLS handshake, limiting model robustness to future versions
of encrypted protocols. Furthermore, encrypted traffic is often treated as any other raw input for DL, while
crucial domain-specific considerations exist that are commonly ignored. In this paper, we design a novel
feature engineering approach that generalizes well for encrypted web protocols, and develop a neural network
architecture based on Stacked Long Short-Term Memory (LSTM) layers and Convolutional Neural Networks
(CNN) that works very well with our feature design. We evaluate our approach on a real-world traffic dataset
from a major ISP and Mobile Network Operator. We achieve an accuracy of 95% in service classification with
less raw traffic and smaller number of parameters, out-performing a state-of-the-art method by nearly 50%
fewer false classifications. We show that our DL model generalizes for different classification objectives and
encrypted web protocols. We also evaluate our approach on a public QUIC dataset with finer and application-
level granularity in labeling, achieving an overall accuracy of 99%.

CCS Concepts: « Networks — Network management; Network measurement; - Computing method-
ologies — Neural networks.

Additional Key Words and Phrases: Encrypted traffic classification; HTTP/2; QUIC; TLS; deep learning

ACM Reference Format:

Iman Akbari, Mohammad A. Salahuddin, Leni Ven, Noura Limam,, Raouf Boutaba, Bertrand Mathieu, Stephanie
Moteau, and Stephane Tuffin. 2021. A Look Behind the Curtain: Traffic Classification in an Increasingly
Encrypted Web. Proc. ACM Meas. Anal. Comput. Syst. 5, 1, Article 4 (March 2021), 26 pages. https://doi.org/10.
1145/3447382

1 INTRODUCTION

Traffic classification is quintessential for network operators to perform a wide range of network
operation and management activities. This includes capacity planning, security and intrusion

Authors’ addresses: Iman Akbari, iakbariazirani@uwaterloo.ca; Mohammad A. Salahuddin, mohammad.salahuddin@
uwaterloo.ca; Leni Ven, shwen@uwaterloo.ca; Noura Limam, noura.limam@uwaterloo.ca; Raouf Boutaba, rboutaba@
uwaterloo.ca, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada, N2L 3G1; Bertrand Mathieu,
bertrand2.mathieu@orange.com; Stephanie Moteau, stephanie.moteau@orange.com; Stephane Tuffin, stephane.tuffin@
orange.com, Orange Labs, 2 Avenue Pierre Marzin, Lannion, France, 22300 .

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

2476-1249/2021/3-ART4 $15.00

https://doi.org/10.1145/3447382

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 4. Publication date: March 2021.

https://doi.org/10.1145/3447382
https://doi.org/10.1145/3447382
https://doi.org/10.1145/3447382

4:2 Iman Akbari et al.

detection, quality of service (QoS), performance monitoring, volumetry, and resource provisioning,
to name a few. For example, an enterprise network administrator or Internet service provider (ISP)
may want to prioritize traffic for business critical services, identify unknown traffic for anomaly
detection, or perform workload characterization for designing efficient resource management
schemes to satisfy performance and resource requirements of diverse applications. Depending on
the context, misclassification on a large scale may result in failure to deliver QoS guarantees, incur
operational expenses, security breaches or even disruption in services.

To preserve the privacy of Internet end-users, encrypted communication between clients and
servers is becoming the norm. Most prominent web-based services are now running over Hypertext
Transfer Protocol Secure (HTTPS). Furthermore, to improve security and quality of experience
(QoE) for end-users, new protocols (e.g., HTTP/2 [9] and QUIC [19]) have emerged, which overcome
various limitations of HTTP/1.1. For example, around 32% of all HTTPS sessions with identifiable
HTTP version use HTTP/2 as their underlying protocol (based on a real-world mobile traffic dataset,
cf. Section 5.2.1). This suggests a high adoption rate of HT'TP/2 in the Internet. However, HTTP/2
features, such as payload encryption, multiplexing and concurrency, resource prioritization, and
server push, add to the complexity of traffic classification.

Machine Learning (ML) and Deep Learning (DL) have undoubtedly become evermore influential
with their application extending over a wide range of domains, including traffic classification.
Over the past two decades, a large body of literature has been created to harness the power of ML
for different traffic classification objectives, such as service-level classification (i.e., classification
into coarse-grained service categories, e.g., video streaming, chat and webmail), application-level
classification (i.e., fine-grained classes, e.g., YouTube, Gmail and WhatsApp), QoS-level and mali-
cious traffic detection. However, there are still various limitations that need to be addressed for its
real-world, practical usage.

For instance, numerous works (e.g., [17, 25, 41]) in traffic classification pick their labels somehow
arbitrarily, which are often inconsistent in granularity. For example, authors in [25] use labels
such as Network Time Protocol (NTP), a protocol, and YouTube, an application, at the same time.
This allows for gerrymandering the dataset to report higher accuracies, and at the same time it is
not conducive to real-world traffic analysis use-cases. Some other works (e.g., [26, 28, 39, 43]) use
datasets with a mixed set of protocols that are often easily distinguishable using header signatures.
Realistically, there is no practical interest in DL-based traffic classification, when the classification
can be achieved with high accuracy via deterministic non-ML approaches (e.g., header matching).
We address this issue by using a dataset of real-world traffic (cf. Section 5.2.1) with consistent
labeling at the service and application levels. We have made the dataset publicly available.

Furthermore, some works in traffic classification leverage clever techniques to guide the models
based on expert domain-specific knowledge. For example, authors in [13] use the position of non-
MTU-sized packets to finger-print content inside an HTTP/2 session. While these solutions might
show performance advantages in the short-term, small variations in the protocol can jeopardize
their entire approach. Thus, future research should move towards generic data-driven methods that
can adapt to different protocols and different traffic classification objectives, by simply changing
the training data. We discuss this issue further in Section 3.1.

More importantly, extensions such as the Server Name Indication (SNI) in Transport Layer
Security (TLS) can essentially reveal the server’s identity, allowing for trivial classification of many
traffic flows based on the server name. It has been showcased [28] that current DL models trained
for traffic classification rely heavily on these extensions, and the model performance degrades if
they are removed. This has severe implications for the state-of-the-art methods. For one, expensive
and complex models are being used to learn a relatively simple logic, similar to that of a server name
to label look-up table, that can be implemented deterministically. We argue that the true power

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 4. Publication date: March 2021.

A Look Behind the Curtain: Traffic Classification in an Increasingly Encrypted Web 4:3

of DL is exploited when the models actually learn about the nature of traffic in different classes,
and identify complex patterns to distinguish between them. We realize this by occluding these
extensions from the training data and eliminate the model’s reliance on them, while leveraging a
carefully crafted feature engineering approach (cf. Section 3.1 & Section 4.2).

In this paper, we leverage DL for service classification (e.g., video streaming, social media, web
mail) with a focus on new encrypted web protocols, i.e., HTTP/2 and QUIC, and overcome the
above limitations. Unlike many works in this area, we focus exclusively on encrypted web traffic,
and explore the challenges of unleashing the full potential of DL to find complex patterns in traffic
that are innate to each traffic class. We occlude parts of the input that allow the DL model to learn
a lazy and unsophisticated logic, and instigate how encrypted traffic should be treated differently
from general raw ML input, e.g., images. We also place emphasis on a well-generalizable feature
set that can be utilized by a diverse variety of future works in encrypted web traffic classification.
Our main contributions are:

o We propose a novel feature engineering approach for encrypted traffic classification that focuses
on protocol-agnostic aspects of the encrypted web traffic. We leverage standard flow statistics,
the traffic shape with respect to size, timing, and direction, along with raw bytes from the TLS
handshake packets. This is in contrast to most DL approaches for traffic classification, where the
full raw traffic is fed to the DL model. We justify why the proposed feature set is a better fit for
classification of encrypted traffic.

e We develop a neural network architecture based on Convolutional Neural Network (CNN)
and Stacked Long Short-Term Memory (LSTM) layers that is highly effective in leveraging the
extracted features for distinguishing between different traffic classes. We exploit the full potential
of DL in identifying and correlating useful traffic traits, while being lighter in the number of
trainable parameters and less likely to overfit.

o We leverage real-world mobile traffic dataset from an ISP, and demonstrate that our approach
has an edge over the state-of-the-art in service classification of encrypted web traffic. We achieve
an average accuracy of over 95% for classification exclusively over HTTPS (i.e., HTTP/1.1
and HTTP/2 over TLS), outperforming [28] by a significant margin of nearly 50% fewer false
classifications. We have made the corresponding pre-processed dataset available to the public.

o We showcase that our DL model generalizes for a finer classification granularity, i.e., application
classification. We also show that our model adapts to a different encrypted web protocol, i.e., QUIC,
by simply changing the training data. We achieve an accuracy of 97% in application-level
classification and an accuracy of 99% on a public QUIC dataset [29].

The rest of the paper is organized as follows. In Section 2, we provide some background on the
HTTP/2 and QUIC protocols, and the challenges they bring to traffic classification, as well as typical
feature categories used by traffic classification approaches. We then review the literature that
inspired our work. We delineate our methodology, feature design and neural network architecture
in Section 3. In Section 4, we discuss data processing and our DL model training. We evaluate our
approach in Section 5, providing insights into what affects its performance and its advantage over
existing methods. We conclude in Section 6 with a brief summary of our work and instigate future
research directions.

2 BACKGROUND

Traffic classification has attracted significant attention in the past two decades. In this section,
we start by briefly introducing the HTTP/2 and QUIC protocols and the challenges they bring to
traffic classification. We shed light on the broad categories of features used for traffic classification,
followed by a review of the related works that have inspired this paper.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 4. Publication date: March 2021.

4:4 Iman Akbari et al.

2.1 New Web Protocols: An Overview

2.1.1 HTTP/2. The HTTP protocol has become a fundamental component in most web-based
services. Based on Google’s SPDY [8] protocol, HTTP/2 is the successor of HT'TP/1.1. and has been
widely adopted by the biggest providers on the internet. It offers performance improvements and
addresses various limitations in HTTP/1.1 with features including synchronous communication
(i-e., pipelining), multiplexing of streams, server push, and binary message framing. In HTTP/2, the
smallest unit of communication is a frame consisting of a header and a sequence of bytes depending
on the frame type. This allows for header compression, as well as prioritization of objects by the
web-browser, to avoid the head-of-line (HOL) blocking. Furthermore, HTTP/2 uses encryption
as a de-facto standard. The protocol offers reduced latency, better bandwidth, and improved QoE.
However, HTTP/2’s multiplexing, compression, and encryption, introduce new challenges for
traffic classification [12].

2.1.2 QUIC. QUIC is a transport-layer protocol, recently proposed by Google. It is already in
use by most Google services, supported by most modern web-browsers, and submitted to IETF
[20] for standardization. QUIC provides an alternative to TCP and brings the key exchange and
encryption to the transport layer. By providing multiplexing and pushing congestion control to the
user space, QUIC provides enhanced performance compared to HTTP over TCP and works hand-
in-hand with HTTP/2 to address HOL blocking.! The significance of QUIC for traffic classification
is two-fold: First, it reinforces the fact that future web communications will use more encryption,
i.e., a larger proportion of each session’s information will be encrypted. Second, similar to HTTP/2,
enhancements such as multiplexing add complexity to traffic classification.

2.2 Deep Learning Architectures

CNN is a class of neural network model with the assumption of spatial invariance built into its
architecture. Compared to a dense neural network, the invariance assumption massively cuts
down the number of parameters in the model. A convolutional layer has a set of filters, which are
convolved against the inputs to produce the outputs. Each filter has very few parameters compared
to the number of inputs and outputs. Commonly, convolutional layers are interleaved with pooling
layers, which reduces the dimension of the output by down-sampling.

A LSTM unit is a recurrent neural network, which is capable of remembering features from
earlier positions in a sequence. LSTM is a common element in neural networks for natural language
processing (NLP). Multiple LSTM units can be stacked together to improve the information flow
between positions in the input sequence. An example of three stacked LSTMs is shown in Figure 1.

2.3 Related Works

Traffic classification using ML started in the early 2000s to distinguish between protocols (e.g., DNS,
SMTP and HTTP) in a network trace. This involved lightweight classic ML models, such as Naive
Bayes and Decision Trees [40], typically trained on a set of flow statistics picked by domain experts
as the model’s input. Soon, the attention shifted toward more challenging traffic classification tasks,
such as classification of encrypted Skype traffic [4, 11]. This is particularly interesting as it operates
on non-standard port numbers. Deep Learning introduced new opportunities in traffic classification
by making it possible to feed large fine-grained feature vectors such as raw traffic to models, as
opposed to aggregated statistics over entire sessions that required manual feature extraction efforts.
The capabilities of Multilayer Perceptron (MLP), Stacked Autoencoders (SAE), CNN, and LSTM for
traffic classification have been extensively explored in recent literature [16, 18, 30, 39, 43].

1HTTP-over-QUIC is often referred to as HTTP/3, as the protocol is aware of the semantics used in HTTP/2 and binds
them to the wire protocol. This name is used to underline the integration and separate it from the general QUIC protocol.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 4. Publication date: March 2021.

A Look Behind the Curtain: Traffic Classification in an Increasingly Encrypted Web 4:5

Sequence

Fig. 1. Part of our proposed model uses three stacked LSTM’s to process the flow information.

We can broadly categorize the typical features employed in traffic classification literature for
modeling traffic into the following groups:

(1) Flow Statistics: A standard flow-meter, such as CICFlowMeter [22], yields the mean, standard
deviation, minimum, maximum, of packet lengths, inter-arrival times, TCP flag counts, flow
durations, number of packets, number of bytes, etc. These statistics constitute a feature vector
for each flow and have been employed since the early traffic classification literature.

(2) Raw Bytes: The actual flow bytes from packet headers and payloads, which have grown in
popularity with the advent of DL. Their appeal is leveraging data in the rawest form, as done
in more conventional applications of DL such as computer vision.

(3) Time-series: Following a fixed-size, packet-level feature through all packets in a flow can
yield a dynamic-sized time-series feature representing the flow. For example, the sizes of the
packets in a flow is a valid time-series feature.

Lotfollahi et al. [26] use raw packet bytes (i.e., feature type 2), with certain adjustments in
pre-processing, as the feature vector to CNN, and SAE. The resulting model is an automated
fingerprinting approach as it tries to classify single packets and not the flows. They leverage a
corpus of mixed-protocol ISCXVPN2016 dataset [22], where they achieve an accuracy of 97%. Bu et
al. [15] extend the CNN with a MLP after each convolution (referred to as Network-in-Network or
NIN) to boost its local abstraction capability. Furthermore, they leverage global average pooling
rather than fully connected layers before final layers, to reduce model complexity. The authors
process raw packet headers and payloads (i.e., feature type 2) through two parallel NINs, where the
final classification is the weighted sum of the individual classifications. They achieve an F1-score
(cf. Appendix A.2) of 98.3% and 98.5% for service- and application-level classification, respectively.

While the ISCX dataset has been widely used in the traffic classification literature, due to
its mixed-protocol nature, it is a much more straightforward classification task than classifying
homogeneous fully encrypted traffic, as the model can learn an easy header-matching logic. For
instance, the traffic in the mail class includes SMTP and POP3 traffic, while the file transfer class
includes SFTP and FTPS traffic, which are easy to distinguish based on their header patterns. Even
models receiving packets individually and outside the context of the flow (e.g., [26]) can have good
accuracies. In contrast, in TLS traffic classification, the performance of such models degrades, as
there is simply not enough information in a single encrypted packet alone.

Aceto et al. [2, 3] evaluate numerous DL approaches for classification of mobile application traffic,
using a proprietary dataset. They argue that there is no silver bullet, when it comes to the choice of
a neural network for traffic classification. However, one-dimensional CNN and LSTM networks
typically perform well due to the sequential nature of network traffic. Lopez-Martin et al. [25]

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 4. Publication date: March 2021.

4:6 Iman Akbari et al.

combine LSTM and CNN layers for service classification on a time-series (i.e., feature type 3), and
achieve an accuracy of 96% on their labeled dataset. However, their classes are inconsistent in
granularity and the model is essentially classifying protocols for some labels. This is a problem we
discuss in Section 1. The authors also show that traditional methods (i.e., based on lightweight ML
models) are inferior to DL models in accuracy, by a significant margin. The high accuracies reported
for traditional models in other works often pertain to different classification tasks (e.g., QoS) or
mixed-protocol datasets (e.g., [40]).

Liu et al. [23] explore the utility of representation layers and an “embedding layer” over the traffic
flows in an initial unsupervised step. The authors use a stack of bi-directional Gated Recurrent Unit
(GRU) layers connected to an encoder network. Autoencoder-based models have also been explored
in other literature [3, 26]. However, it is difficult to identify a clear advantage in Autoencoder
architectures over state-of-the-art CNN models in their evaluations. Therefore, we partly adopt the
use of stacked recurrent units in our models, while proposing a lighter feature engineering that is
more apt for general encrypted web traffic classification.

The authors’ analogy between the initial encoding layer to embedding layers in NLP (i.e., used
to motivate their approach) is inaccurate. The NLP embedding layers capture the semantics of
how words of a corpus appear in correlation to each other and complex linguistic semantics, while
encoding layers find compressed representations of individual flows. The exact transfer of NLP
methodology to traffic classification has been done in [32], but the research in this area is in its
infancy, and has not received much attention due to the restrictiveness of such features.

Wang et al. [38] combine CNN and LSTM layers for learning both spacial and temporal features
of the traffic, with raw one-hot encoded bytes (i.e., feature type 2) making up the input to the model.
Although the objective of their training is intrusion detection, the effectiveness of their method is
still significant to service classification. The authors show that though they might be outperformed
by rival methods in detecting specific attacks, they are the most consistent in detecting attacks
across all categories, with a 99% accuracy on the ISCXIDS2012 dataset [33].

Anderson et al. [5] augment the typical features used in classic ML techniques (i.e., feature type 1),
with: (1) values of certain fields from the TLS handshake headers, picked by a domain expert, and (2)
packet length for the first fifty packets. Their evaluation shows a clear advantage of including these
additional features, as the results of all models (i.e., Support Vector Machine, Linear Regression,
Logistic Regression, Random Forest, Decision Trees, MLP) show higher accuracy at 0.001% False
Discovery Rate (FDR)?. More recently [6], the authors propose a TLS client fingerprinting approach
based on similar hand-picked features from the ClientHello message, and contextual information
such as IP address, port number, and autonomous system. A weighted Naive Bayes (NB) model
is used for classification. While the approach is sound for client software fingerprinting, it is
in contrast to our work which focuses on identifying regularities in traffic patterns rather than
particular servers. Their approach relies on exclusively hand-picked features and data from all
relevant clients. Moreover, while we appreciate the focus on simpler algorithms when they perform
well, in our experiments lightweight traditional models, especially NB, perform very poorly for
service classification. Lastly, in many use cases of service classification (e.g., volumetry), early
detection, which is an advantage of the approach in [6], is not a high priority.

Schuster et al. [31] also bring the importance of traffic shape to spotlight, showing that even the
actual traffic content can be finger-printed based on traffic shape. The authors model the traffic of
Netflix, YouTube, and other streaming platforms over Dynamic Adaptive Streaming over HTTP
(DASH) protocol as a time-series of down/up/all bytes-per-second, down/up/all packets-per-second,

2 Accuracy at .001% FDR means the accuracy of the model, when it is only allowed one false positive for every 100,000 true
positives.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 4. Publication date: March 2021.

A Look Behind the Curtain: Traffic Classification in an Increasingly Encrypted Web 4:7

and down/up/all average packet length. Using these features and a standard CNN, they identify the
video being streamed with an accuracy of over 98%, on a dataset that constitutes up to a 100 titles.
The authors show that by analyzing the "burstiness" of traffic at different points in time, the actual
title being watched under encryption can be determined with high accuracy.

Bronzino et al. [14] explore classification and regression models for inferring important QoS
metrics of encrypted video traffic. The authors make use of traditional ML models such as Linear
Regression, Ridge Regression, Support Vector Regression, Decision Tree, and Random Forest (RF)
regressors, as well as RF classifiers. They leverage a carefully crafted set of statistical features
(i.e., feature type 1) to predict the target metrics, effectively achieving 93% precision for detecting
video resolution. While this approach is effective in predicting particular metrics (i.e., playback
startup delay and resolution), the feature engineering is tailored for a specific task and does not
generalize to various traffic classification objectives.

Rezaei et al. [28, 29] leverage CNN and CNN-LSTM architectures with certain adjustments to
achieve high performance. Their focus, like ours, is on encrypted web traffic such as HTTPS.
However, their dataset also contains non-encrypted traffic. In [28], for their CNN-LSTM model, the
authors model the traffic sessions as a series of flows. From each flow, the first six packets are fed
raw to the flow-level model (i.e., feature type 2). Their dataset is comprised of real-world mobile
traffic, labeled with applications and 45% of the flows use SSL or TLS. The authors report an overall
accuracy of 94.22%, but the accuracy for HTTPS alone is 75.43%. In their post-hoc analysis, the
authors identify the importance of different parts of the TLS headers to their model by masking
different portions of the input and evaluating its impact on the model accuracy. They find that
the model does in fact heavily fit to cipher info and the SNI field, to the point that the accuracy of
the model drops to 38% when SNI records are occluded. We discussed this as one of the pitfalls
of applying DL to traffic classification in Section 1. Due to its high relevance, we use [28] for
comparison of our model to the state-of-the-art.

In [29], Rezaei et al. propose a semi-supervised approach to address scarcity of labeled data. In
pre-training, the convolutional part of the CNN-LSTM model is trained on unlabeled data, with
statistical features of traffic (i.e., feature type 1) used as the target of training. In the subsequent
supervised step, the authors connect the pre-trained CNN to the LSTM part and perform the
training on labeled data. They demonstrate the effectiveness of their approach on both a small
QUIC dataset they have made public, and the Ariel dataset [27] for HTTPS with an accuracy of 96%
and 84%, respectively. The authors show that without the pre-training step, their accuracy is lower.

3 SYSTEM ARCHITECTURE

In this section, we discuss our traffic engineering strategy that unifies the three categories of traffic
features explained in Section 2.3 and is highly suitable for encrypted traffic classification. We also
present our deep neural network model based on Stacked LSTM and convolutional layers, which is
designed to work with our feature engineering and realize its potential.

3.1 Feature Engineering

Most works in DL-based traffic classification feed raw traffic bytes to the neural network model
(cf. Section 2.3). Indeed, DL models are powerful enough to extract meaningful features from raw
input on their own, provided a sufficiently large dataset. The notion of leveraging raw traffic bytes
as model input is inspired from more conventional domains of DL, such as computer vision. Some
works in traffic classification, such as Seq2Img [16], have gone as far as modeling the traffic as
a two-dimensional image. However, as with the adoption of DL in any new domain, there are
important considerations in traffic classification based on domain-specific knowledge of the task
and the nature of data.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 4. Publication date: March 2021.

4:8 Iman Akbari et al.

Handshake TLS Headers

Vectorize

Flow Time-series

m. |
—>| Vectorize |— 5| Classifier

Flow Statistics

Vectorize

Fig. 2. TLS headers from the handshake, flow time-series, and standard flow statistics as the DL model input.

An important distinction between network traffic and images is encryption, which is becoming
the norm in ordinary web usage. A traffic flow or packet is often almost completely encrypted,
except for the initial handshake and some of the header fields that are transmitted in plain-text.
Therefore, in the computer vision analogy, a traffic flow is like an image that is completely obfuscated
except for a small area in it. Any effort to consume the encrypted portions of the traffic as the
classification model input is essentially an attack on established encryption algorithms, such as
Advanced Encryption Standard (AES), which is unrealistic.

Furthermore, it is crucial to consider what the DL model is exactly learning during training. For
example, in an insightful post-hoc analysis, Rezaei et al. [28] show that the accuracy of their DL
model completely degrades when the SNIfield or TLS cipher info is masked. This implies that typical
neural network models trained on raw traffic basically implement a look-up table which predicts
a class based on the server’s identity exposed by certain TLS extensions. We refer to the parts of
the traffic that expose the server’s identity as canary features. There are three major drawbacks
in relying on canary features: (i) An expensive deep neural network is used for implementing a
relatively simple logic, which can be performed deterministically with a very low computational
overhead. (ii) The performance of the DL model is highly dependent on seeing large amounts of
traffic from all relevant servers in a service category (e.g., traffic from all video streaming platforms)
in training. In other words, the model is not really learning anything about the nature of video
flows in general. (iii) The availability of these identifiers of the server (e.g., plain-text SNI field)
in-the-clear is crucial for the utility of the DL approach. If the SNI field becomes outdated or
encrypted in the future versions of TLS, which is not unlikely with the advent of Encrypted SNI,
the entire DL method can lose its effectiveness.

Our input to the DL model combines all three types of features, described in Section 2.3. As
summarized in Figure 2, it is comprised of: (i) handshake header bytes, (ii) flow time-series, and (iii)
flow statistics.

First, we include raw bytes from the handshake in our input to the model. However, we remove
the canary features such as SNI and cipher info in our pre-processing, to diminish the model’s
reliance on that information. Also, due to our focus on encrypted protocols, we assume that L5-7
payloads contain very little information as they are expected to be encrypted. Therefore, there
is no utility in including entire packets in the DL model input and the aforementioned payloads
only create more ways for the model to overfit. Besides, packets other than the handshake packets
(i.e., ClientHello and ServerHello messages) are redundant and expose virtually no meaningful

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 4. Publication date: March 2021.

A Look Behind the Curtain: Traffic Classification in an Increasingly Encrypted Web 4:9

information to the model. Thus, the raw traffic data for our DL model input, is truncated after the
TLS headers of the handshake packets.

Secondly, we steer our DL model’s focus on traffic aspects that are hardly affected by encryption.
While the TLS records and extensions evolve over time and new encrypted protocols emerge
with radically different characteristics, the traffic shape would always be available regardless of
the underlying protocol. These kinds of traffic features can be quite effective for different traffic
classification objectives, such as detecting a video being streamed using DASH [31] or distinguishing
between malware and non-malware traffic [5]. We hypothesize that the traffic flow time-series
of packet sizes, directions, and inter-arrival times (IATs) contain useful information for service
classification as well. We discuss the flow time-series in more detail in Section 3.2.

Lastly, traditional flow statistics measured by standard flow-meters can also assist the model in
traffic classification. Examples of traditional features include mean, standard-deviation, and median
of packet sizes, number of different TCP flags, duration of the flow, etc. These features have been
used for a variety traffic classification tasks for over two decades, and continue to be a simple
yet powerful tool for distinguishing between different classes of traffic. This also allows for our
overarching methodology to generalize for works such as [14], where a set of features are picked by
domain experts for a particular traffic classification or regression task. Recall that Rezaei et al. [29]
propose a semi-supervised traffic classification approach based on flow statistics, where the neuron
weights from the unsupervised pre-training are used as a starting point for supervised learning.
Their CNN model is initially trained on a large unlabeled dataset to compute standard statistical
features. Subsequently, the pre-trained CNN is attached to an LSTM layer with time dimension
over the different flows of a session. The new composite model is then trained on a smaller labeled
dataset. While we appreciate the shift towards semi-supervised learning and the use of unlabeled
datasets, steering the DL model towards statistical aggregations is not ideal to harness the full
potential of DL. Their approach guides the DL model to extract meaningful statistical insights from
the traffic. However, if the weights learnt in pre-training are expected to stay relatively constant,
one can deterministically compute the statistical features used in pre-training and offer them as
the DL model’s input. Moreover, DL is effective in detecting much more nuanced patterns in traffic,
i.e., patterns that cannot be easily aggregated into high-level scalar metrics of the flow.

Note that the combination of handshake features and flow time-series was first proposed by
[7] to detect malicious traffic. Aside from the use of statistical features as a third input, another
key distinction between our approach and [7] is the use of DL to extract useful features of the
handshake, while they require a domain expert to cherry-pick them for the TLS protocol. Though
our research is focused on encrypted web protocols and mostly revolves around TLS, our feature
engineering methodology is protocol-agnostic. Regardless of a protocol’s implementation details,
it is expected to have a negotiation or handshake segment, while the rest of the traffic would be
fully encrypted. This segment will make up the only raw inputs to the model. The flow time-series,
i.e., traffic shape and timing, as well as flow statistics will always be available in IP. Therefore, the
model will have to be retrained and specialized for new protocol versions as they evolve, but our
overarching feature engineering methodology will still be applicable.

3.2 Flow Time-series

Previously, we discussed the drawbacks of relying only on raw traffic bytes for traffic classification,
which include learning over-simplified logic and poor transferability to future use-cases. Indeed,
the goal of employing highly intricate DL models for traffic classification is to find distinctive and
complex patterns pertaining to the nature of a traffic class. Therefore, we divert our attention to the
aspects of traffic that are not used to identify a known server, but are rather innate to the service
class itself.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 4. Publication date: March 2021.

4:10 Iman Akbari et al.

chat download games mail
10 15
20 — IAT 20 — IAT — IAT — IAT
o 10
o 5
£ 10 10 5
IS
g 0 [ST, ol b 0 STty [T 0 AR e b,
] -5
E -10 -10 -5
z -10
-20 -20
-10 -15
0 100 200 300 400 0 100 200 300 400 0 100 200 300 400 0 100 200 300 400
1500
1000
’q"'? 1000 1000 1000
2z 500 500
8
> 0 0 0 0
£ -500 -500
£ o000 -1000 1000 -1000
Packet Size Packet Size Packet Size Packet Size
-1500
0 100 200 300 400 0 100 200 300 400 0 100 200 300 400 0 100 200 300 400
search social streaming web
40 15 10
— IAT — IAT 10 — IAT — IAT
@ 10
© 20 5
£ 5 5
[
T 0 AT iy 0 M LT 0 el RS AN SR5 0 Lo Okt A,
]
v -5 -
g -20 ° -5
c
= -10 10
-40 _15 -10
0 100 200 300 400 0 100 200 300 400 0 100 200 300 400 0 100 200 300 400
1500 1500
1000 1500
1000 1000
'q,,,‘) 1000
E 500 500 500
I
& 0 0 0 0
s - -500
g 500 500 500
a -
-1000 -1000 1000
Packet Size - 1000 Packet Size Packet Size _ 4540 Packet Size
-1500 -1500
0 100 200 300 400 0 100 200 300 400 0 100 200 300 400 0 100 200 300 400
Packet Number Packet Number Packet Number Packet Number

Fig. 3. The average of flow time-series extracted from the Orange’20 dataset. The blue lines follow the IATs
of the packets in the traffic flows. The orange lines show the size of the packets sent in each direction, where
negative values indicate packets from flow’s destination to its origin. The dashed lines delineate error bars of
one standard deviation for each graph.

One advantage of relying on the flow time-series features (cf. Section 3.1), is their relative
independence from the implementation details of the protocol. While different extensions may be
added to and removed from the protocol making it more difficult to classify traffic, characteristics
such as the traffic shape and timing of the packets will always be present, unless a protocol is
intentionally designed to obfuscate such information. Though this is a possibility, designing such
obfuscation strategies would have a negative impact on bandwidth, latency, and QoS, as it entails
sending redundant traffic or delaying packets in order to manipulate the time-series. Therefore, it
is unrealistic that there would be enough motivation for introducing such measures in ubiquitous
web protocols.

Figure 3 shows the difference of flow time-series between various classes in our dataset (cf. Sec-
tion 5.2.1), where the time-series of packet IATs and sizes are averaged for each class and the error

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 4. Publication date: March 2021.

A Look Behind the Curtain: Traffic Classification in an Increasingly Encrypted Web 4:11

Convolution Convolution Convolution Convolution

Max
Pooling Pooling ~ Concatenate

TLS Handshake
Bytes

Flow Time-series

1024x3 Standard Flow \
Statistics)
61 200 200

Fig. 4. Tripartite neural network architecture

is plotted with dashed lines. At a glance, it is easy to see subtle but visible differences between the
traffic shapes of different classes. Note that the packet size time-series has a positive value when
the packet goes from the flow’s origin to its destination, and negative otherwise. In other words,
we multiply the packet size by -1 when it’s going from flow destination to flow origin. As revealed
later in our experiments, deep neural networks (e.g., CNN and LSTM layers) are highly effective
in detecting these nuanced patterns for each class, and traffic classification can be enhanced by
including the time-series in the input. By combining these features with raw bytes, we can create a
powerful feature set that can be used for learning the nature of traffic, as well as identifying useful
parts of the secure protocol’s headers for identifying applications.

3.3 Model Architecture

Our neural network architecture reflects the structure of the features presented in Section 3.1.
As shown in Figure 4, our neural network model separately processes the flow time-series, the
handshake TLS headers, and the standard flow statistics as input. Each of the three inputs is fed to
a separate set of neural network layers, and the output of those layers is later concatenated and
passed through additional fully-connected layers to produce the final prediction.

The raw handshake bytes are fed to a deep one-dimensional CNN with max-pooling layers
in between. The structure of these layers is quite standard and a one-dimensional equivalent of
commonly used computer vision models, which has proven effective on network traffic [2, 26, 28].
We only feed the first C bytes of up to three ClientHello and ServerHello packets from the flow
to the model. In our evaluations in Section 5.4, it is proven that there is no real disadvantage in
omitting the rest of the traffic, which has strong implications for future research in this area. The
value for C in our experiments is 600, which is picked through a hyper-parameter search described
in Section 5.4.1.

The flow time-series has three channels: (i) IAT, (ii) size, and (iii) direction. In our experiments,
we found that a stacked LSTM architecture preceded by a dense layer, is extremely effective in
processing the flow time-series features, while one-dimensional CNNs are also viable (cf. Section 5.4).
In our implementation, we use a stack of three LSTM layers going through the flow time-series in
both directions (cf. Section 2.2). We also include flow statistics extracted using CICFlowMeter [22].
Since these features do not have a natural ordering or sequentiality, a fully-connected network is
used to ingest them.

One of the major advantages of our feature engineering is the ability to include information
about a large number of packets without substantially increasing the model size. In a classic raw

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 4. Publication date: March 2021.

4:12 Iman Akbari et al.

input approach, it is normal to include the first b bytes of the first k packets of a flow to the model.
The size of the input grows linearly by increasing k, which can create a super-linear increase in
the number of model parameters and quickly lead to overfitting. In contrast, our model limits
the raw traffic to the handshake packets, and uses a lightweight representation with only three
channels for the other packets of the flow. This allows the model’s scope to grow and consider
hundreds of packets without a significant impact on its complexity. The outputs from these three
parts (i.e., flow time-series and statistics, and TLS headers) are concatenated and passed through
multiple additional dense layers, which yields the output of the network as a softmax layer.

Our early experiments showed that the models are highly prone to overfitting. This is not
surprising considering the fact that the number of parameters in the model to be trained is in the
order of millions. It is not uncommon for traffic classification models to be trained on datasets which
have an order of magnitude less entries than the number of trainable parameters in the model. To
overcome the problem of overfitting, we use very high drop-outs (i.e., up to 50% at some layers),
especially in the final dense layers. As showcased in Section 5.4, our feature engineering itself has
a tremendous effect in lowering the chance of overfitting when compared to the conventional raw
traffic input.

4 LABELING & TRAINING

Pre-processing is a very important step in traffic classification, which is sometimes overlooked
despite the fact that it can significantly impact the accuracy of the model. In this section, we describe
how our data is gathered, labeled, and pre-processed for the training in practice.

4.1 Labeling based on Server Names

A primary challenge in the application of ML to network systems is the scarcity of labeled real-world
packet traces. Due to privacy concerns, administrators are reluctant to publish real-world network
data to the public. An alternative is to use synthetic datasets. However, they often fail to capture
the true distribution and patterns of real-world network traffic, which significantly affects model
generalization and makes their evaluations questionable. It is also generally difficult to label traffic
at its origin, as it requires users to actively participate in the process and log their activities.

In contrast, raw unlabeled network traces are available in abundance to the service providers. We
leverage the SNI field of TLS records to extract the server names. A look-up table is used to match
server names to their respective classes. Each domain name from the SNI field is matched against
a set of regular expressions that are either carefully handpicked (i.e., by monitoring the traffic of
prominent websites and mobile apps, e.g., Netflix, YouTube, and AppStore), or gathered from a
dataset of categorized domain names, such as the Blacklists UT1 dataset [1]. For certain providers
(e.g., Google and Facebook) extra care must be taken, as similar sub-domains may be shared between
multiple service categories. The granularity of classification can be set by simply modifying the look-
up table. For instance, based on whether we would like to perform application-level or service-level
classification, we can change how server names are mapped to labels.

4.2 Pre-processing
We design our pre-processing to be performed in a distributed fashion using Apache Spark. As
shown in Figure 5, the following steps are taken in the pre-processing of the data:

(1) Extract flows (i.e., 5-tuples of src/dst IP/port and protocol) via standard flow-meters like YAF.

(2) Filter flows with TLS packets, as we are particularly interested in encrypted web traffic.

(3) Extract basic flow information, such as the flow start and end times, packet count, byte count,
flow time-series, etc.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 4. Publication date: March 2021.

A Look Behind the Curtain: Traffic Classification in an Increasingly Encrypted Web 4:13

Raw PCAP Files ¢

Pack together

with adjacent R
flows of the same Inject zeroes in
session 1P address and

Extract 5-tuple v port #
Flows Use other flows ¢

of same session

Parse PCAP

Generate binary
files for training

<

@

Filter out flows lto label if SNT not Remove canary g’

N the model
with no TLS available for flow features 5
7 1 g
~ Find underlying
Extract label Extract flow Feed to CIC flow protocol in each Truncate / Zero-
based on SNT time-seri meter to extract dtofixsize ||
ased on 1me-series statistical info flow group from pad to fix size
ALPN

Fig. 5. Overview of the pre-processing steps

(4) Extract statistical features for the flow using CICFlowMeter, and store it as metadata.

(5) Extract SNI domain name and assign label based on a look-up table.

(6) Group flows from the same TLS session ID together. If TLS session ID does not exist, time
proximity and NAT-aware source and destination IP & port numbers are used.

(7) For each unlabeled flow f, check other flows in the same session as f, and use their label for
f. Often in multi-flow TLS sessions, only the first flow contains the SNI record.

(8) Vectorize the flow into a time-series of binary information as follows: (i) mask IP addresses
by injecting zeroes even if they are already randomized, (ii) remove TLS cipher information
(iii) mask the SNI record (iv) truncate to MTU size or zero-pad the packet bytes—ensure fixed
vector size.

(9) Write raw traffic bytes to binary files, with each entry having an array of vectorized bytes
from up to three handshake packets. Include flow statistics and a time-series of maximum
length 1024 with the three channels for packet sizes, directions (+1), and inter-arrival times
for each entry as well.

4.3 Training strategy

In addition to the model itself, the training strategy (i.e., the optimization process) has an impact
on the end result as well. In our approach, we use an Adam optimizer [21] that performs stochastic
gradient descent based on adaptive estimates of lower-order moments. We have learned that one
effective strategy is to manually lower the learning rate as the training progresses.

Since the learning rate decides the granularity of the parameter search, there is an inherent
trade-off in the choice for its value. Small values for the learning rate can lead to slow training and
over-exploration of local optima in the loss function’s optimization. Excessively high values for the
learning rate can prevent enough granularity in the parameter search and lead to low accuracy in
the final model, as we leap over optimal configurations.

By manually reducing the learning rate after every few epochs, we can balance this trade-off.
Our strategy is to start from a default learning rate (e.g., 1073) and decimate the learning rate every
10 to 20 epochs when the overall validation loss starts to flatline. This way, we essentially increase
the resolution of the search as the training progresses. The optimizer will start with making large
leaps in the parameters and gradually decrease the step size in order to learn a highly optimal set
of weights for the DL model.

Due to the imbalance in the number of dataset entries for each class, we also employ an up-
sampling strategy, which increases the impact and weight of entries from smaller classes during

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 4. Publication date: March 2021.

4:14 Iman Akbari et al.

40000

35000
30000
9
25000 HAHED EHTTP/1.1
20000 BHTTP/2
12.02% Unidentifiable
15000 H No. Flows
10000
| I N
0
> &z" &6\ & $29
&8

é\'z} & & aé&o eoé(t} «z§é\QQ . .
$ o Fig. 7. The percentage of TLS sessions by the
overlying protocol. Note that not all TLS ses-
Fig. 6. Breakdown of the approximately-labeled por- sions can be identified, as the ALPN and NPN
tion of the ISP network dataset per class records may not be available (cf. Section 5.4.2).

training, proportionate to the size of the classes. Although quite simple, the upsampling strategy
considerably enhances the model’s overall performance.

5 EVALUATION
5.1 System Specification

We conduct our experiments on a machine with one NVIDIA Tesla P40 GPU 24GB GRAM, 56
Intel(R) Xeon(R) Gold 5120 2.20GHz CPUs and 376 GBs of RAM. The software stack for training
and pre-processing includes Centos 7, CUDA 10.1, Tensorflow 1.15 and PySpark 2.4.4. The code
base is developed with Keras for convenience.

5.2 Dataset Description

5.2.1 Orange’20 Dataset. The primary dataset used in our work is provided by Orange S.A., a
major ISP in Europe. The dataset was collected on July 11, 2019 for about 80 minutes, from the
ISP’s mobile network. For privacy concerns, the IP addresses are masked and the packet payloads
are removed with the exception of TLS headers. The entire dataset has more than 800K unlabeled
flows, where about ~300K are TLS flows and of interest to us. We use the SNI field to label the TLS
flows (cf. Section 4.1) with the following service categories: (i) chat, (ii) download, (iii) games, (iv)
mail, (v) search, (vi) social, (vii) streaming, and (viii) web. A total of 119,565 out of the 343,228 TLS
flows are labeled, using our approximate labeling scheme, with both manually picked URLs and the
UT1 dataset [1]. The distribution of service categories in the labeled dataset is shown in Figure 6.
In the spirit of transparency and openness in research, we have released the pre-processed dataset
(cf. Section 4.2) with certain adjustments for privacy compliance to the public.?

5.2.2 UC Davis QUIC Dataset. The QUIC dataset has been recently released by the authors in [29].
It comprises of 3,637 flows, classified into Google Docs, Google Drive, Google Music, Google Search
and YouTube. This is natural as Google is currently the primary advocate for the QUIC protocol’s
adoption in the industry. The dataset is relatively balanced, with no class being twice as large as
the others. Furthermore, it is partly generated by human users and partly via automated agents.

5.3 Evaluation Methodology

Evidently, the accuracy of a traffic classification model by itself can not be thought of as a global
KPI for a model’s strength, as the model performance can significantly vary from one dataset

3The dataset is available for download at http://bit.ly/UW-Orange-2020

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 4. Publication date: March 2021.

http://bit.ly/UW-Orange-2020

A Look Behind the Curtain: Traffic Classification in an Increasingly Encrypted Web 4:15

to another. Hence, the significance of these results can only be verified when compared against
existing models in the literature.

For comparison, we implement the CNN and CNN-LSTM models proposed by Rezaei et al. [28],
which have shown good performance in application-level traffic classification. The authors model
the input as a series of flows, which can be thought of as a user session. The CNN model operates
on the flow level, i.e., the first 256 bytes of the first 6 packets of a single flow in the series are fed
to a deep CNN. The CNN model is very similar to the header part of our model (cf. Figure 4). On
the other hand, the CNN-LSTM model receives the session (i.e., a time-series of flows) as its input,
and essentially makes the CNN model time-distributed over the flows of each session and labels
the entire session. Similar architectures have been employed over the years for encrypted traffic
classification [3, 39], making it an ideal baseline to compare our model against.

5.4 TLS Classification at Service-level

We start by evaluating the performance of our feature engineering approach and DL model archi-
tecture on the Orange’20 dataset. The data is pre-processed according to Section 4.2 and comprises
of TLS flows only. We compare our DL model against the state-of-the-art CNN and CNN-LSTM
architectures, showing a clear advantage and asserting our contributions.

Our model is trained using the Adam optimizer for 40 epochs, with 20% of the dataset used for
validation. The learning rate is set to 0.001 at first and reduced every 10 epochs. The results of
the experiment are shown in Figure 8, with an overall accuracy and weighted average F1-score
of 95.56% and 95.58%, respectively. Figure 8b shows the per-class precision, recall, and F1-score
of our model. The F1-score is over 94% for all classes, which implies very good stability despite
the highly imbalanced classes in the dataset. This can be attributed to the upsampling strategy
employed during training. As a baseline, a C4.5 model is trained on statistical flow features. C4.5,
among other DT-based algorithms, is a popular choice in traditional traffic classification [4, 12, 35]
but only achieves an accuracy of 81.39%, as shown in Table 1. We attribute the disadvantage of the
traditional approach in part to its sole reliance on high-level statistics and not being able to make
distinctions based on more fine-grained details of the traffic shape.

The advantage of our model is clear when compared against the UCDavis CNN model, as shown
in Table 1. When evaluated on the Orange’20 dataset, the UCDavis CNN model in [28] achieves an
accuracy of 91.09% after 20 epochs, which is 4.5% lower than our three-part model in Figure 4. This
is a significant gain in performance with 50.39% reduction in false classifications.

In Figure 9, we highlight the training progress to reason about this performance gain. The figure
shows validation loss, training loss and accuracy at the end of each training epoch. Evidently, the
UCDavis CNN model quickly overfits to the dataset. This is primarily due to a larger raw traffic
input, only a part of which is actually useful to the model. After 12 epochs, the training accuracy is
perfect, while the validation performance fails to improve. In contrast, the validation and training
accuracies converge very well in the case of our model*, as our feature engineering only provides
the useful information for encrypted flows (i.e., handshake and flow shape). The implications of
these results are significant. Despite having access to twice the number of packets, the competitor
UCDavis CNN model is far less effective, as all meaningful information lies in the handshake.
Exposing a larger chunk of the raw traffic to the UCDavis CNN model, simply confuses the model
and provides more ways to overfit.

4The validation accuracy reported is actually higher than training accuracy. This is due to the high dropout strategy discussed
in Section 4. During training, the dropouts are active, which in the case of very high dropout values can cause the training
accuracy to suffer.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 4. Publication date: March 2021.

4:16

chat RN 0.00980.0037 0 0.00120.00860.00820.0078
download -0.004 1 A3 0.0067 0.0035 0.00120.000230.0028 0.018
games 0.000970.0077 [eArg 0 0.000970.00290.00480.0077

mail -0.0017 0.00740.0008 JMeA<L: |4 0.0039 0.0017 0.0013 0.0052

Actual

search-0.0016 0 0 0.0038gAED.00054 0 0.0011
social -0.0074 0.0064 0.0021 0.0064 0.0012 [eREM0.0064 0.017
streaming -0.0056 0.00420.0021 0 0.0021 0.014 juKEM 0.021

web -0.0046 0.03 0.00660.0047 0.00360.0075 0.011 [NeRekE}

.) .) .))
= o un = E= o o o
] ? o S o 2 £ Q
5 S £ € 5 9 £ =z

c © Q 2

H E) 3 s

3 g

° @

(a)

Iman Akbari et al.

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

W precisionMrecall ~ f1

(b)

Fig. 8. Confusion matrix (a) and per-class precision, recall, and F1-score (b) for our model’s evaluation on the
Orange’20 dataset. Our classifier consistently achieves +94% F1-score across all classes.

W Avg W Avg W Avg Accuracy | Epoch Time

precision (%) | recall (%) | F1-score (%) (%) (s)
Full Model (SLSTM) 95.62 95.56 95.57 95.56 2584
Full Model (CNN) 94.54 94.42 94.37 94.43 232
Flow-only Model (SLSTM) 86.71 86.51 86.56 86.51 1814
Flow-only Model (CNN) 76.77 73.17 73.76 73.17 211
UCDavis CNN [28] 91.09 91.06 91.04 91.05 168
UCDavis CNN-LSTM [28] 89.74 89.72 89.73 89.72 245
Traditional Baseline (C4.5) 81.56 81.39 81.41 81.39 18*

Table 1. Performance comparison of TLS flow classification models (*the training time reported for the C4.5

model is for the entire training)

18 100%
16
1.4 95%
12
 S-m-0-u
0/
1 90% >
2 g
g 08 85% 3
0.6]
0.4 l 80%
0.2
0 75%
LT T S S U R S
epoch

-~ val acc —#—train acc

(a) UCDavis CNN model

val loss = train loss

loss

- val acc —e—train acc

35

25

15

05

0

N D

0O PN D PP D

epoch

100%
95%
90%
85%
80%

75%
%4

val loss = train loss

(b) Our model

accuracy

Fig. 9. The progression of training and validation accuracy, and loss during the training of the UCDavis CNN

model [28] and our model

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 4. Publication date: March 2021.

A Look Behind the Curtain: Traffic Classification in an Increasingly Encrypted Web 4:17

chat JUE:YAN0.0086 0.014 0.0029 0.021 0.041 0.013 0.029 chat JKINN 0.012 0.00660.0029 0.011 0.02 0.0083 0.027
download - 0.011 K-y 0.013 0.0032 0.017 0.012 0.0062 0.068 download -0.0034 K-l 0.0079 0.0047 0.0095 0.0029 0.0027 0.077

games - 0.025 0.015 [MeR:E0.00290.0077 0.011 0.024 0.065 games -0.0096 0.034 VEEN0.00190.00190.00480.0029 0.049

mail -0.0087 0.007 0.0017geAL 0.01 0.00220.0013 0.019 mail -0.0021 0.017 0 ((B°X0.0056 0.00170.00086 0.042

Actual
Actual

search-0.016 0.019 0.00540.0071eKr340.0082 0.017 0.011 search -0.0086 0.00980.000570.0046 jeEE3M0.0029 0.0057 0.016
social - 0.036 0.022 0.011 0.00210.0071 eR:{34 0.023 0.037 social- 0.011 0.01 0.00180.00240.0042 [Nkl 0.019 0.043
streaming - 0.021 0.018 0.017 0.0028 0.024 0.067 WUY¥M 0.077

streaming - 0.013 0.011 0.00420.00210.0035 0.078 |ek:¥A 0.071

web - 0.022 0.051 0.022 0.00650.0093 0.019 0.027 [NeR:Z3 web -0.0071 0.031 0.00660.0092 0.0027 0.0082 0.007 8 MRk}

5 %3 8 3 % T 2 % g3 ¢ 3 &8 § 2 %
S ¢ § f § § £ = > ¢ 5 g & 5 °
H o o] 2 o o o
o o o =
3 2 3 2

(a) Flow-only Stacked LSTM (b) UCDavis CNN

Fig. 10. Performance of UCDavis CNN model [28] and our Flow-only Stacked LSTM model

Table 1 depicts the performance of other variations of our model. We replace the Stacked
LSTM (SLSTM) layers in the original model (cf. Section 3.3) with a deep one-dimensional CNN
(cf. Appendix A.1), which is also a reasonable network for consuming a one-dimensional time-
series. Though inferior to Stacked LSTM, the accuracy and F1-score of the resultant model is 94.43%
and 94.37%, respectively. Nevertheless, it has a clear advantage over the UCDavis CNN model,
which only processes raw traffic, with 37.77% less false classifications. The advantage of employing
CNNs on the flow time-series side of the model, however, is in higher training speed (232 vs. 2,584
seconds/epoch), which is close to our competitor model despite being much more accurate. LSTM
networks are notorious for being computationally expensive to train, and Stacked LSTM layers
are even more so. Nevertheless, as model training is often a one-time investment and with the
rapid advancement of computational hardware, this is a reasonable cost for higher classification
accuracy.

We attribute the superior performance of our model to the flow aspect of our feature engineering
and the Stacked LSTM layers. In fact, the flow time-series, despite being a simple feature set to model
the traffic, is quite effective by itself. In Table 1, we also showcase results of our model variation
with all the other inputs and their corresponding layers removed, except the flow time-series. We
refer to these models as "Flow-only". In this case, the Stacked LSTM and deep one-dimensional
CNN architectures achieve an accuracy of 86.51% and 73.17%, respectively. Although being inferior
in performance to models that also include raw traffic as input, it is important to note that the
flow time-series features will always be available regardless of how the encrypted protocols evolve.
These features enable a model to learn about the nature of traffic categories themselves, rather
than fingerprinting a particular set of servers. Therefore, for all future research, we instigate the
use of these flow features as a baseline for evaluations.

It is important to note that the UCDavis CNN model depicts a high misclassification between the
streaming and social classes, where mutual providers such as Facebook and Twitter exist, as shown
in Figure 10. This is a reoccurring issue with DL models for traffic classification that only rely on
raw TLS bytes and are more tuned towards identifying a server rather than a service. The Flow-only

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 4. Publication date: March 2021.

4:18 Iman Akbari et al.

98

g % @ 2900
< = 2800
o _
S 94 -~ 200 g 2700 e
g —-256 2600 LN T
8 92 [} RERbE,
3 400 S 2500 D
© o -
S 9 —— 600 g 2400 "'
£ 3800 = 2300 e
© ~ -
= 88 1000 g 2200 g e
s 1500 § 20
86 £ 2000
10 20 30 40 200 256 400 600 800 1000 1500
epoch packet cut-off threshold
(a) Accuracy per cut-off value (b) Epoch time

Fig. 11. Our model’s performance for different values of packet truncation cut-off (C)

model, despite having access to very simplistic traffic features, makes fewer misclassifications
between these classes, and when used together with the handshake bytes in our full model, is able
to alleviate the difficulties in distinguishing between the two classes.

A rather surprising result in Table 1 is the performance of the UCDavis CNN-LSTM model [28].
As mentioned in Section 5.3, the UCDavis CNN-LSTM model is time-distributed over the flows
of a “session”, and theoretically has access to more information in comparison to our model that
processes flows individually. However, the model’s access to full traffic bytes does not work in
its interest, and though having more parameters and capacity than the UCDavis CNN model, it
overfits more severely to the data achieving a slightly less accuracy of around 90%. In fact, similar
to the UCDavis CNN model, it quickly rises and achieves perfect training accuracy at around the
seventeenth epoch, but fails to increase the validation accuracy any further.

5.4.1 Packet cut-off. We discussed in Section 4.2 that when the traffic bytes are pre-processed, we
only truncate them to MTU for the sake of having fixed sizes. However, when loading the data for
training, we additionally truncate the packets of the handshake to a cut-off of C bytes. Figure 11a
shows the validation accuracy of the models with different values for the hyper-parameter C, at
each epoch of training.

There is clearly a trade-off when increasing the value of C. Exposing a larger portion of the
packet headers can give the model more information to work with. However, it also increases the
capacity and size of the model, making it more likely to overfit to the training data. Based on the
results, we found C = 600 to be a good value for the parameter. The final accuracy varies between
94.53% and 95.56% for all the models we considered. Note that the input is zero-padded at the end if
the packet’s header is smaller than C. Therefore, given that not all packets have useful information
in the first C bytes, it is not surprising that a middle value for C works better on average in the
aforementioned trade-off. Training time per epoch is displayed in Figure 11b. As expected, the
training time increases almost linearly with C, since the number of parameters on the raw bytes
side of the model increases.

5.4.2 HTTP Versions. The final insight here pertains to the HTTP version and how it affects the
performance of our model. In Sections 1 and 2, we mentioned that HTTP/2 brings new features to the
web, but at the same time complicates traffic classification. We evaluated our model’s performance
on different subsets of the validation set, based on the HTTP version. Not all flows captured in the
Orange’20 dataset have the Next Protocol Negotiation (NPN) or ALPN records available to identify
the protocol used over TLS. The “known” and “unknown” in Figure 12 elude to this fact.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 4. Publication date: March 2021.

A Look Behind the Curtain: Traffic Classification in an Increasingly Encrypted Web 4:19

98%

W Avg
precision (%)

W Avg
recall (%)

W Avg
F1-score (%)

Accuracy
(%)
HTTP/1.1 97.79 97.75 97.74 97.75 25.51

95% HTTP/2 95.12 94.91 94.91 94.91 12.02
Known 96.88 96.84 96.83 96.84 37.53
94% I I Unknown 94.94 94.80 94.83 94.80 62.47
All 95.62 95.56 95.57 95.56 100.00
93%

HTTP/1.1 HTTP/2 Known Unknown All

97% ‘ % of dataset

96%

B Accuracy W Avg F1

@ (b)

Fig. 12. The impact of different HTTP versions on the performance of our model. Note that not all TLS
sessions can be identified as the ALPN and NPN records may not be available. The flows without next protocol
information are denoted as "unknown".

] W Avg precision (%) \ W Avg recall (%) \ W Avg F1-score (%) \ Accuracy (%) ‘

y 97.24 \ 97.08 \ 97.11 | 9708]
Table 2. Model performance in application-level classification

As expected, the performance of the model on HTTP/1.1 is higher than HTTP/2, i.e., 97.75%
vs. 94.91%, due to the latter being a more complex protocol with features such as multiplexing,
which make traffic classification more difficult. More importantly, the flows captured without the
ALPN/NPN records are also generally harder to classify than the rest. This is due to the fact that
there is a higher likelihood that these flows are captured from the middle of a session. Hence, they
contain less information in their beginning for the model to leverage. It should also be noted that
there is a disparity between the number of HTTP/2 and HTTP/1.1 flows in the training set. This
reinforces the model’s better performance on HTTP/1.1.

5.5 TLS Classification at Application-level

Many works in traffic classification (e.g., [3, 28]) focus on application-level classification which
is at a finer granularity than our labels in Section 5.4. While counter-intuitive, application-level
classification is often an easier task, especially when model is closed-world (i.e., dataset entries
strictly belong to one of the n known applications) or canary features are not occluded. If the
DL model is trained with the objective of a look-up table for identifying servers themselves
(cf. Section 3.1), application-level classification is generally easier for the model, as it does not need
to learn what behaviors are shared between different applications of the same service category.

In order to evaluate our model in application-level classification, we identified 19 fine-grained
labels that have enough representative flows for the training to be consistent. The distribution of
these labels that make up for 82,776 flow entries of the dataset (i.e., ~ 70%) is shown in Figure 13b.
Figure 13a depicts the result of employing our model by simply modifying the last softmax layer to
accommodate 19 fine-grained classes instead of the 8 service categories. The overall accuracy of
the model is 97.08%, as shown in Table 2. Despite having more classes, the accuracy of the model
is higher than service-level classification, due to the raw bytes part of the model being extremely
effective in fingerprinting specific servers. One side effect is that the different services from the
same provider (e.g., Facebook video and Facebook social) have higher cross misclassifications, as
evident in Figure 13a.

A key take-away from this experiment is that a good feature engineering approach for encrypted
traffic classification can be adapted to different classification tasks, as it is good in capturing the
“nature of traffic”. It will be an interesting part of future research to leverage the feature engineering

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 4. Publication date: March 2021.

4:20

Actual

Iman Akbari et al.

10°
chatFacebook 18000
chatSnapchat-
chatWhatsapp-
downloadApple- 16000
downloadGooglePlay -
mailGmail - 14000
mailHotmail-
mailOutlook - 12000
searchGoogle-
socialFacebook-
sociallnstagram- 10000
socialTwitter-
streamingFacebook- 8000
streamingNetflix -
streamingSnapchat-
streamingYoutube - 6000
webAmazon-
webAppleLocalization- 4000
WebMiCrOSOft"““““““““‘
XL oUSNT=NYOX SN XBOCCE
8E3eR P88 cE8EE5RS] 2000
3NgeGEE0L 95523500 .Il
EERgssofdgoisEiass omEmER
CRSC08E=E=0L28lchoa 8 D « X NS >
2 z 28 EEEES=o5E 22853 0@1@@2&2& S &\@Q;oeo(; ‘\Q’Qc‘\%"&@%\i LIS o&i@;@e
©588F %gg"EBEs 2* & S S S N e S A Fe
2 "R sEECO o TILS P LT L F LK S E F L
< oNoE g R I O I R RO &
H £ 50 2 E S i NSNS K <L &
] oo° 4 @ & N & \a
2 S B 9 &
Predicted g N
(a) Application-level model accuracy (b) Label distribution

Fig. 13. Distribution of application-level labels in Orange’20 dataset and the model’s performance

100%

GoogleDoc 0 0 0
96%
GoogleDrive - d 92%
©
£ GoogleMusic - 0 88%
<
84%
GoogleSearch - 0
80%
© O X @
Youtube - 0 ° Q‘QQ & 'b\o \\’»Q
& N3 Q o S
' o > N @ A
. oy L O &
PR LN R N © © M
o5 PO g\eeeﬁov‘ S
G 7 go° H Precision mRecall © F1
Predicted
(a) Confusion matrix (b) Per-class precision, recall, and F1-score

Fig. 14. Model performance on the UCDavis QUIC traffic dataset

presented in Section 3.1 in areas other than service- and application-level classification, such as
QoS classification and security.

5.6

QUIC Classification

We evaluated our model on the UC Davis QUIC Dataset (cf. Section 5.2.2), which only includes
the traffic shape time-series and not the actual network traces. In order to adapt to the dataset
structure, we modified our approach by only activating the flow time-series part of the model and
conducted the training for 20 epochs.

In evaluation, our model achieve a high validation accuracy (i.e., 99.37%), which is higher than the
best one reported by the authors for their CNN model in [29] (i.e., ~98%), regardless of whether their
semi-supervised scheme (i.e., pre-training on unlabeled data first) is carried out or not. Figure 14a
shows the result of the classification, which re-affirms that our proposed feature engineering is
indeed a good indicator of the traffic class, and can adapt well to different encrypted web protocols.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 4. Publication date: March 2021.

A Look Behind the Curtain: Traffic Classification in an Increasingly Encrypted Web 4:21

Our model achieves high accuracies despite the fact that QUIC is a more challenging protocol with
a larger encrypted portion. These results also validate the utility of the Stacked LSTM architecture
used in the flow time-series part of our model.

6 CONCLUSION & FUTURE WORK

Traffic classification has become increasingly challenging with the widespread adoption of encryp-
tion in the Internet. Moreover, encrypted protocols are bound to evolve, rendering protocol-specific
approaches futile in the future. In this paper, we propose a DL approach for encrypted traffic
classification that focuses on protocol-agnostic aspects of the encrypted web traffic. Our feature
set comprises of a time-series of packet size, direction and inter-arrival times, flow statistics, and
raw bytes from only the TLS handshake, while the DL model is based on CNN and Stacked LSTM
layers. We show that raw traffic apart from the TLS handshake does not contribute to the DL
model’s performance, but rather adds to its complexity and increases overfitting. Thus, the feature
engineering method makes use of concepts that are applicable to most encrypted protocols.

To ensure our DL model robustness to future versions of TLS, we obfuscate parts of the TLS
handshake (e.g., SNI field and cipher info) that give away the server identity. Instead, we focus
on the traffic shape and timing of packets, which show high potential in learning the complex
nature of traffic among different classes. We show that our DL model generalizes for different
classification objectives, i.e., service- and application-level classification, and adapts to different
encrypted web protocols (i.e., HTTP/2 and QUIC) by simply changing the training data. We evaluate
our approach for service-level classification on a real-world mobile traffic dataset from an ISP, and
show that by leveraging less raw traffic and a smaller number of parameters, our model outclasses
a state-of-the-art approach [28, 29].

Some recent works [36, 37] have leveraged generative models for addressing the class imbalance
problem in deep traffic classification. These data augmentation approaches can facilitate DL models
and should be explored more in the future. Furthermore, Attention Networks [34] have gained
popularity in the past few years, especially in the NLP literature. Recently, they have also been
leveraged in traffic classification [24, 42]. Despite our initial experiments showing no real advantage
in replacing LSTM layers in our architecture with Attention Networks, we will continue to experi-
ment with the combination of recurrent and convolutional layers with Attention Networks. We also
plan to investigate domain adaptation and transfer learning [10], which are important yet often
overlooked in traffic classification literature, and were not in the scope of this paper. For instance,
it is interesting to study how well a model trained under certain network conditions (e.g., subnet,
packet drop rate, latency and QoS level) would work under different conditions. Similarly, measur-
ing the accuracy of a model through time and studying how well it translates to completely different
sets of applications and servers should be explored in depth. Another important open problem is
re-purposing models for different traffic classification tasks. For instance, a service classification
model trained on millions of entries might be transferable to malware detection using relatively
few data points, by reusing the weights of its initial and middle layers. Lastly, the robustness of
traffic classification models against adversarial attacks and privacy leaks is of utmost importance
and remains an open research question for future work.

ACKNOWLEDGMENTS

We thank our shepherd Athina Markopoulou and the anonymous reviewers for their valuable
feedback, Yann Meyer for his help in the preparation of the dataset, and Ezzeldin Tahoun for his
help in the preliminary stages of the project.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 4. Publication date: March 2021.

4:22

Iman Akbari et al.

REFERENCES
[1] Université Toulouse 1. 2020. Blacklists UT1. http://dsi.ut-capitole.fr/blacklists/index_en.php. [Online; Accessed

[10
[11

(12

[13

(14

[15
[16
[17
[18
[19
[20
[21

[22

[23
[24

[25

—

]

—

]

]

]
]
]

—_ =

]

—

]
]
]

01-October-2020].

Giuseppe Aceto, Domenico Ciuonzo, Antonio Montieri, and Antonio Pescapé. 2018. Mobile encrypted traffic classifica-
tion using deep learning. In IEEE Network Traffic Measurement and Analysis Conference (TMA). 1-8.

Giuseppe Aceto, Domenico Ciuonzo, Antonio Montieri, and Antonio Pescapé. 2019. Mobile encrypted traffic classifica-
tion using deep learning: Experimental evaluation, lessons learned, and challenges. IEEE Transactions on Network and
Service Management 16, 2 (2019), 445-458.

Riyad Alshammari and A Nur Zincir-Heywood. 2009. Machine learning based encrypted traffic classification: Identifying
ssh and skype. In IEEE symposium on computational intelligence for security and defense applications. 1-8.

Blake Anderson and David McGrew. 2017. Machine learning for encrypted malware traffic classification: accounting
for noisy labels and non-stationarity. In ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. 1723-1732.

Blake Anderson and David McGrew. 2020. Accurate TLS Fingerprinting using Destination Context and Knowledge
Bases. arXiv preprint arXiv:2009.01939 (2020).

Blake Anderson, Subharthi Paul, and David McGrew. 2018. Deciphering malware’s use of TLS (without decryption).
Springer Journal of Computer Virology and Hacking Techniques 14, 3 (2018), 195-211.

Mike Belshe and Roberto Peon. 2012. SPDY Protocol. Technical Report. Network Working Group. 1-51 pages.
https://tools.ietf.org/pdf/draft-mbelshe- httpbis-spdy-00.pdf

Mike Belshe, Roberto Peon, and Martin Thomson. 2015. Hypertext Transfer Protocol Version 2 (HTTP/2). IETF RFC 7540.
1-96 pages.

Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer Wortman Vaughan. 2010.
A theory of learning from different domains. Machine learning 79, 1-2 (2010), 151-175.

Dario Bonfiglio, Marco Mellia, Michela Meo, Dario Rossi, and Paolo Tofanelli. 2007. Revealing skype traffic: when
randomness plays with you. In ACM SIGCOMM Computer Communication Review, Vol. 37. 37-48.

Raouf Boutaba, Mohammad A Salahuddin, Noura Limam, Sara Ayoubi, Nashid Shahriar, Felipe Estrada-Solano, and
Oscar M Caicedo. 2018. A comprehensive survey on machine learning for networking: evolution, applications and
research opportunities. Springer Journal of Internet Services and Applications 9, 1 (2018), 16.

Pierre-Olivier Brissaud, Jéréme Francgis, Isabelle Chrisment, Thibault Cholez, and Olivier Bettan. 2019. Transparent
and Service-Agnostic Monitoring of Encrypted Web Traffic. IEEE Transactions on Network and Service Management 16,
3 (2019), 842-856.

Francesco Bronzino, Paul Schmitt, Sara Ayoubi, Guilherme Martins, Renata Teixeira, and Nick Feamster. 2019. Inferring
streaming video quality from encrypted traffic: Practical models and deployment experience. ACM on Measurement
and Analysis of Computing Systems (SIGMETRICS) 3, 3 (2019), 1-25.

Zhiyong Bu, Bin Zhou, Pengyu Cheng, Kecheng Zhang, and Zhen-Hua Ling. 2020. Encrypted Network Traffic
Classification Using Deep and Parallel Network-in-Network Models. IEEE Access 8 (2020), 132950-132959.

Zhitang Chen, Ke He, Jian Li, and Yanhui Geng. 2017. Seq2img: A sequence-to-image based approach towards ip traffic
classification using convolutional neural networks. In IEEE International Conference on Big Data (Big Data). 1271-1276.
Ramin Hasibi, Matin Shokri, and Mehdi Dehghan. 2019. Augmentation scheme for dealing with imbalanced network
traffic classification using deep learning. arXiv preprint arXiv:1901.00204 (2019).

Jonas Hochst, Lars Baumgartner, Matthias Hollick, and Bernd Freisleben. 2017. Unsupervised traffic flow classification
using a neural autoencoder. In IEEE Conference on Local Computer Networks (LCN). 523-526.

Janardhan Iyengar and Ian Swett. 2015. QUIC: A UDP-Based Secure and Reliable Transport for HTTP/2. Technical Report.
Network Working Group. 1-30 pages.

Jana Iyengar and Martin Thomson. 2018. QUIC: A UDP-based multiplexed and secure transport. Internet Engineering
Task Force, Internet-Draft (2018).

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980
(2014).

Arash Habibi Lashkari, Gerard Draper-Gil, Mohammad Saiful Islam Mamun, and Ali A Ghorbani. 2017. Characterization
of Tor Traffic using Time based Features. In International Conference on Information Systems Security and Privacy
(ICISSP). 253-262.

Chang Liu, Longtao He, Gang Xiong, Zigang Cao, and Zhen Li. 2019. Fs-net: A flow sequence network for encrypted
traffic classification. In IEEE Conference on Computer Communications (INFOCOM). 1171-1179.

Xun Liu, Junling You, Yulei Wu, Tong Li, Liangxiong Li, Zheyuan Zhang, and Jingguo Ge. 2020. Attention-based
bidirectional gru networks for efficient https traffic classification. Elsevier Information Sciences 541 (2020), 297-315.
Manuel Lopez-Martin, Belen Carro, Antonio Sanchez-Esguevillas, and Jaime Lloret. 2017. Network traffic classifier
with convolutional and recurrent neural networks for Internet of Things. IEEE Access 5 (2017), 18042-18050.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 4. Publication date: March 2021.

http://dsi.ut-capitole.fr/blacklists/index_en.php
https://tools.ietf.org/pdf/draft-mbelshe-httpbis-spdy-00.pdf

A Look Behind the Curtain: Traffic Classification in an Increasingly Encrypted Web 4:23

[26]

[27]

[28]
[29]
[30]
[31]
[32]

[33

—

[34]

[35

[

[36]

[37]

[38]

[39]

[40]

[41]
[42]

[43]

Mohammad Lotfollahi, Mahdi Jafari Siavoshani, Ramin Shirali Hossein Zade, and Mohammadsadegh Saberian. 2020.
Deep packet: A novel approach for encrypted traffic classification using deep learning. Springer Soft Computing 24, 3
(2020), 1999-2012.

Jonathan Muehlstein, Yehonatan Zion, Maor Bahumi, Itay Kirshenboim, Ran Dubin, Amit Dvir, and Ofir Pele. 2017.
Analyzing HTTPS encrypted traffic to identify user’s operating system, browser and application. In 2017 14th IEEE
Annual Consumer Communications & Networking Conference (CCNC). IEEE, 1-6.

Shahbaz Rezaei, Bryce Kroencke, and Xin Liu. 2019. Large-scale mobile app identification using deep learning. IEEE
Access 8 (2019), 348-362.

Shahbaz Rezaei and Xin Liu. 2018. How to achieve high classification accuracy with just a few labels: semi-supervised
approach using sampled packets. arXiv preprint arXiv:1812.09761 (2018).

Vera Rimmer, Davy Preuveneers, Marc Juarez, Tom Van Goethem, and Wouter Joosen. 2017. Automated website
fingerprinting through deep learning. arXiv preprint arXiv:1708.06376 (2017).

Roei Schuster, Vitaly Shmatikov, and Eran Tromer. 2017. Beauty and the burst: Remote identification of encrypted
video streams. In USENIX Security Symposium (USENIX Security 17). 1357-1374.

Yan Shi, Dezhi Feng, and Subir Biswas. 2019. A Natural Language-Inspired Multi-label Video Streaming Traffic
Classification Method Based on Deep Neural Networks. arXiv preprint arXiv:1906.02679 (2019).

Ali Shiravi, Hadi Shiravi, Mahbod Tavallaee, and Ali A Ghorbani. 2012. Toward developing a systematic approach to
generate benchmark datasets for intrusion detection. computers & security 31, 3 (2012), 357-374.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia
Polosukhin. 2017. Attention is all you need. In Advances in neural information processing systems. 5998-6008.

Petr Velan, Milan Cermak, Pavel Celeda, and Martin Drasar. 2015. A survey of methods for encrypted traffic classification
and analysis. International Journal of Network Management 25, 5 (2015), 355-374.

Ly Vu, Cong Thanh Bui, and Quang Uy Nguyen. 2017. A deep learning based method for handling imbalanced problem
in network traffic classification. In International Symposium on Information and Communication Technology. 333-339.
Pan Wang, Shuhang Li, Feng Ye, Zixuan Wang, and Moxuan Zhang. 2020. PacketCGAN: Exploratory study of class
imbalance for encrypted traffic classification using CGAN. In IEEE International Conference on Communications (ICC).
1-7.

Wei Wang, Yiqiang Sheng, Jinlin Wang, Xuewen Zeng, Xiaozhou Ye, Yongzhong Huang, and Ming Zhu. 2018. HAST-IDS:
Learning hierarchical spatial-temporal features using deep neural networks to improve intrusion detection. IEEE
Access 6 (2018), 1792-1806.

Wei Wang, Ming Zhu, Jinlin Wang, Xuewen Zeng, and Zhongzhen Yang. 2017. End-to-end encrypted traffic classification
with one-dimensional convolution neural networks. In IEEE International Conference on Intelligence and Security
Informatics (ISI). 43-48.

Nigel Williams, Sebastian Zander, and Grenville Armitage. 2006. A preliminary performance comparison of five
machine learning algorithms for practical IP traffic flow classification. ACM SIGCOMM Computer Communication
Review 36, 5 (2006), 5-16.

Haipeng Yao, Pengcheng Gao, Jingjing Wang, Peiying Zhang, Chunxiao Jiang, and Zhu Han. 2019. Capsule network
assisted IoT traffic classification mechanism for smart cities. IEEE Internet of Things Journal 6, 5 (2019), 7515-7525.
Haipeng Yao, Chong Liu, Peiying Zhang, Sheng Wu, Chunxiao Jiang, and Shui Yu. 2019. Identification of Encrypted
Traffic Through Attention Mechanism Based Long Short Term Memory. IEEE Transactions on Big Data (2019).
Zhuang Zou, Jingguo Ge, Hongbo Zheng, Yulei Wu, Chunjing Han, and Zhongjiang Yao. 2018. Encrypted traffic
classification with a convolutional long short-term memory neural network. In IEEE International Conference on
High Performance Computing and Communications; IEEE International Conference on Smart City; IEEE International
Conference on Data Science and Systems (HPCC/SmartCity/DSS). 329-334.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 4. Publication date: March 2021.

4:24 Iman Akbari et al.

A APPENDIX

A.1 Model Details

Table 3. Architecture of the tripartite model with convolutions in the flow side. By default a layer connects
to its predecessor.

Type ‘ Shape ‘ Connection
In (3,600) Header Input
Reshape (1800, 1)

Convolution1D | (1799, 256)

ReLU

Convolution1D | (1799, 256)

ReLU

MaxPooling1D | (899,256)
Convolution1D | (898,128)
ReLU
Convolution1D | (897,128)
ReLU
MaxPooling1D | (448,128)
Flatten (57344)

In (61) Flow Meter Input
Dense (200)
BatchNorm
LeakyReLU
Dropout(0.2)
Dense (200)
BatchNorm
LeakyReLU
Dropout(0.5)

In (1024, 3) Flow Input
Convolution1D | (1024, 128)
BatchNorm
ELU
Convolution1D | (1024, 128)
BatchNorm
ELU
MaxPooling1D | (512,128)
Convolution1D | (512, 64)
BatchNorm
ELU
Convolution1D | (512, 64)
BatchNorm
ELU
MaxPooling1D (256, 64)
Flatten (16384)

Concatenate (73928)
Dense (128)
LeakyReLU
Dropout(0.5)
Dense (128)
LeakyReLU
Dropout(0.5)
Dense (8)
Softmax

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 4. Publication date: March 2021.

A Look Behind the Curtain: Traffic Classification in an Increasingly Encrypted Web 4:25

Table 4. Architecture of the tripartite model with LSTM’s in the flow side. By default a layer connects to its
predecessor.

Type ‘ Shape ‘ Connection
In (3,600) Header Input
Reshape (1800, 1)

Convolution1D (1799, 256)

ReLU

Convolution1D (1799, 256)

ReLU

MaxPooling1D (899, 256)

Convolution1D (898, 128)

ReLU

Convolution1D (897,128)

ReLU

MaxPooling1D (448,128)

Flatten (57344)

In (61) Flow Meter Input
Dense (200)

BatchNorm

LeakyReLU

Dropout(0.2)

Dense (200)

BatchNorm

LeakyReLU

Dropout(0.5)

In (1024, 3) Flow Input
Dense(Distributed) | (1024,512)

BatchNorm

LeakyReLU

LSTM(Forward) (1024, 256)
LSTM(Backward) (1024, 256)
LSTM(Forward) (256)

Dropout(0.5)

Concatenate (57800)

Dense (128)

LeakyReLU

Dropout(0.5)

Dense (128)

LeakyReLU

Dropout(0.5)

Dense (8)

Softmax

A.2 Performance Metrics

Each prediction from a binary classifier model can be either a true-positive (TP), false-positive (FP),
true-negative (TN), or false-negative (FN). When evaluating a model’s performance, the count of
each of these four metrics, can help calculate other useful metrics.

Precision denotes what percentage of positive instances from the model, are correct. It is defined
as follows:

TP) 1
perp 0 g

Recall indicates what percentage of the instances that have a positive label in ground truth, have
indeed been classified as positive by the model:

precision =

recall = X 100% (2)

TP
TP+FN

However, these two metrics by themselves can not be used to evaluate a model. For instance, a
model that always gives a positive prediction will have a perfect recall (i.e., recall = 100%). Similarly,

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 4. Publication date: March 2021.

4:26 Iman Akbari et al.

a model that always gives negative predictions, would never have a false-positive and will have a
perfect precision (i.e., precision = 100%). That is why, F1-score (or F1) is defined as a combination

of the two metrics:
precision X recall

F1—score =2 X% X 100% (3)

precision + recall
This is called a “harmonic mean” of precision and recall. It is more useful than the arithmetic
mean, since if either metric falls to zero, so would the F1-score.
Accuracy is a more familiar metric, which essentially indicates what percentage of all predictions

are correct:
TP+TN
accuracy = X 100% (4)
TP+TN +FP+FN

In our evaluations, we use weighted average recall, precision, and F1-score of the models, which
is an average of those metrics over all classes and weighted by the class sizes (i.e., number of entries
with each class label in the dataset). This is denoted by “W Avg” precision, recall, and F1-score
throughout the paper.

Received October 2020; revised December 2020; accepted January 2021

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 1, Article 4. Publication date: March 2021.

	Abstract
	1 Introduction
	2 Background
	2.1 New Web Protocols: An Overview
	2.2 Deep Learning Architectures
	2.3 Related Works

	3 System Architecture
	3.1 Feature Engineering
	3.2 Flow Time-series
	3.3 Model Architecture

	4 Labeling & Training
	4.1 Labeling based on Server Names
	4.2 Pre-processing
	4.3 Training strategy

	5 Evaluation
	5.1 System Specification
	5.2 Dataset Description
	5.3 Evaluation Methodology
	5.4 TLS Classification at Service-level
	5.5 TLS Classification at Application-level
	5.6 QUIC Classification

	6 Conclusion & Future Work
	Acknowledgments
	References
	A Appendix
	A.1 Model Details
	A.2 Performance Metrics

