
IEEE Communications Surveys & Tutorials • 4th Quarter 20072

he increasing need for networked applications and dis-
tributed resource sharing carries a strong incentive for
an open large-scale service infrastructure that operates

over large-scale networks spanning multiple domains. This
trend is emphasized in ongoing research (e.g. Web Services
initiative [1]) that aims towards service globalization.

In addition to supporting a large number of services/users
participating over a large network, service globalization may
require interoperation of diverse discovery systems based in
independently-administrated domains. Part of that interopera-
tion is sharing information about deployed services across
domain boundaries. There is therefore a need for open and
extensible service-discovery framework that can incorporate
multiple domains and bridge together heterogeneous service
discovery approaches. In this work, we keep in mind the par-
ticular need for flexibility and extensibility of discovery mech-
anisms that would enable such an interoperation.

Service and resource discovery is a crucial research topic,
since it is required to support any service infrastructure. A
large-scale, multi-domain service infrastructure requires a ser-
vice discovery system that is open, scalable, robust and effi-
cient to a greater extent than a single-domain system. In this
article we survey a number of service discovery approaches
and extract those characteristics that make them suitable for
this kind of infrastructure. In this manner, we use the work
both as general survey and as a guide for the design of a ser-
vice discovery system.

Our analysis and comparison encompasses several key dis-
covery approaches, including Salutation, SDS, SLP, Jini, INS,

UPnP, INS/Twine, JXTA, and Splendor. We also examine dis-
covery mechanisms used in Web Services, Grid Services, and
content-sharing peer-to-peer (P2P) systems. To formally struc-
ture our analysis and comparison, we first define a set of
design criteria as a “measuring stick” for evaluating all of the
discovery approaches according to our goal of a large-scale
service infrastructure. While exposing the strengths and weak-
nesses of these approaches, we focus on a selected few
approaches that can serve as the starting blueprint for a new
discovery mechanism.

A few surveys [2–5] have previously been conducted on
service and resource discovery. Some of them have considered
discovery approaches such as Bluetooth Service Discovery
Protocol [6] and DEAPspace [7]. The former targets pervasive
computing environments and, more specifically, interactions
between Bluetooth enabled devices in Personal Area Net-
works. The latter is designed for ad-hoc networks and more
specifically single-hop ad-hoc networks, and has been
enhanced into Konark [8] to address multi-hop ad-hoc net-
works. These approaches are not considered in this article,
since they are aimed to specific environments and are closely
similar to other more significant approaches.

The rest of the article is organized as follows: we define
the terminology used in this article. We describe the criteria
used for the evaluation and comparison of the different dis-
covery approaches against the requirements of our target
infrastructure. We present an overview of these approaches,
then we evaluate and compare them with respect to each cri-
terion. This leads to the selection of a number of approaches

T

S U R V E Y S
I E E E
C O M M U N I C A T I O N S

T h e E l e c t r o n i c M a g a z i n e o f
O r i g i n a l P e e r - R e v i e w e d S u r v e y A r t i c l e s

REAZ AHMED, NOURA LIMAM, JIN XIAO, YOUSSEF IRAQI, AND RAOUF BOUTABA,

ABSTRACT

With the increasing need for networked applications and distributed resource
sharing, there is a strong incentive for an open large-scale service infrastructure
operating over multidomain and multi-technology networks. Service discovery, as an
essential support function of such an infrastructure, is a crucial current research chal-
lenge. Although a few survey papers have been published on this subject, our contri-
bution focuses on comparing and analyzing key discovery approaches in the context
of large-scale and multidomain networks. The comparison is conducted based on a
set of well-defined criteria, leading to a selection of few approaches that can serve as
the guide in designing a global service discovery system for large-scale and multi-
technology networks.

RESOURCE AND SERVICE DISCOVERY IN

LARGE-SCALE MULTI-DOMAIN NETWORKS

4TH QUARTER 2007, VOLUME 9, NO. 4

www.comsoc.org/pubs/surveys

1553-877X

IEEE Communications Surveys & Tutorials • 4th Quarter 2007 3

which, in our opinion, best meet the requirements of a large-
scale multidomain environment. We then conclude this docu-
ment. In Appendix 1, we present a number of distributed
peer-to-peer indexing schemes used by a few discovery sys-
tems.

TERMINOLOGY

We define a service as a set of functionalities associated with
a process or system that performs a task. We say that the pro-
cess or system implements the service.

A resource is defined as an entity that is used or acted
upon by a process or system. A service functionality takes
resources as input.

To further clarify the difference between the two above
definitions, a mathematical representation can be used to
show the relationship between a service and a resource. We
can denote a service by a function f, and a resource by an
input variable x. The outcome of the service is then returned
as f(x). Notice that a service can be invoked by another ser-
vice. In this case, the outcome of the service f becomes a
resource and is used by another service, say g. This is called
service composition and the outcome of the service g becomes
g(f(x)). Hence, we do not classify the service itself as a
resource, rather, the outcome produced by the service is
again, a resource. Since the act of providing a resource is
itself a service, for the sake of simplicity we will occasionally
say service discovery where we mean discovery of services and
resources.

In this survey, we considered existing service discovery
approaches in large-scale networks. Most of the industrial ser-
vice discovery approaches like (Jini, SLP, UPnP etc.) use
hardware devices like printer, fax machine, etc. as networked
services. On the other hand, the majority of WebService dis-
covery approaches consider a software component, perform-
ing a specific functionality, as a service. Our definition of
“service” covers both views.
• Service description: The set of descriptive attributes of a

particular service.
• Service advertisement: Both the publication of informa-

tion about a service, and the published information itself,
are referred to as a service advertisement

• Soft-state advertisement: When a lifetime is associated to
a service, the advertisement is said to be soft-state. If the
advertisement is not renewed before the expiration of
the lifetime, then the service is assumed no longer avail-
able.

• Hard-state advertisement: In contrast to the soft-state
advertisement, a hard-state advertisement assumes an
infinite service lifetime. A service is assumed to be avail-
able until its unavailability is explicitly announced.

DESCRIPTION OF CRITERIA

The primary objective of our investigation is to establish the
foundation for building a distributed large-scale, multi-domain
discovery system capable of facilitating open service discovery
across heterogeneous software/hardware infrastructures, and
of scaling to hundreds of thousands of users. To this end, we
structure our analysis and comparison of the key discovery
approaches, based on a set of evaluation criteria that we
believe are critical to the construction of such an open and
distributed discovery system. To the best of our knowledge,
this is the first comparison in literature undertaken with a
strong focus on designing large-scale service-discovery systems

across service discovery domains, administrative domains and
network boundaries. Of the few existing works on comparing
discovery systems [9–11], we find their criteria applicable to
limited context (e.g. ad hoc networks, LAN). Research in the
area of designing discovery systems has been prolific in the
past years, and has resulted in many existing discovery systems
designed for diverse application environments (e.g. WLAN,
home networks, grid services, etc.). Some of our criteria are
chosen to categorize these systems, such as by architecture
and by scale. However, our criteria largely focus on evaluating
whether each discovery system is suitable for an large scale
multi-domain setting. We consider the following aspects in
particular: effectiveness, fault tolerance, performance, securi-
ty, and platform- and network-dependence. These criteria are
generated from our investigation into large-scale and multido-
main networks (Fig. 1). In addition, we list the standardization
efforts and implementation status of these systems as an indi-
cator of their maturity and acceptance.

The following subsections provide a brief description of
each criterion and its importance in our context. Due to the
limitation of space, our latter evaluation of existing discovery
systems selects only those systems that best illustrate a certain
technique or class of approaches.

ARCHITECTURE

This criterion refers mainly to how information is distributed,
and therefore accessed, in the discovery infrastructure. The
architecture of discovery systems ranges from centralized to
fully decentralized. It is a key design criterion influencing how
many requests, in a given time interval, the system can handle
and how efficient it can execute these requests. The nature of
the Internet favors distributed architectures, however the very
degree of distribution is much dependent on the way informa-
tion is to be stored, and how it is accessed.

EFFECTIVENESS

An important criterion in examining any system is how effec-
tively it is able to perform its tasks. In our case, we look at
how well the system can discover services; specifically, we look
at the correctness and completeness of discovery. The termi-
nology used in this context varies across literature. Informa-
tion retrieval literature uses precision and recall to describe
the effectiveness of data retrieval operations. We prefer to use
the terms well known in peer-to-peer literature: completeness
and correctness. Completeness is the ability of a service-discov-
ery process to return all matching service instances registered
in a service directory. If there are multiple directories (or ser-
vice registries) accessible to the system, every matching service
registered in the directories must be retrieved for the discov-
ery process to be complete. The other criterion, correctness,
denotes the validity of the results of service discovery: when a
service is discovered, how closely does it match the user’s
request?

In a multi-domain environment that hosts thousands of
service instances, both correctness and completeness of dis-
covery are more important than in a small, restricted environ-
ment. Completeness of service discovery requires the system
to retrieve relevant results across domain boundaries and
across potentially-large network distances. Complementarily, a
high degree of correctness is necessary so that these relevant
results do not get lost among a flood of a possibly huge num-
ber of irrelevant results. In an ideal situation, the correctness
measures of a service discovery system would ensure that the
returned results closely match the intent of the query, despite
the heterogeneities that may exist in the information repre-

IEEE Communications Surveys & Tutorials • 4th Quarter 20074

sentation and syntax of each service-discovery domain. While
completeness depends mostly on the search mechanism, cor-
rectness is largely achieved through the expressiveness of ser-
vice description and query languages.

FAULT TOLERANCE

Fault tolerance deals with the behavior and robustness of the
discovery process under erroneous conditions. Since the dis-
covery system is a support function to service infrastructures,
its failure may hinder the entire service provisioning process.
We consider two aspects of fault tolerance: how does the sys-
tem behave under erroneous conditions and how well does
the system recover from errors. Robustness of the discovery
system in terms of these two aspects is crucial in a multi-
domain environment with hundreds of thousands of users and
services, as inevitably such system will encounter operational
errors. Its recovery (or failure to recover) will have significant
impact to users/systems over a large scale. In each discovery
approach, we examine the resistance to failure in the system
and its recovery mechanisms.

PERFORMANCE

Because the discovery process is a managerial task, the
amount of communication overhead involved (i.e. network
resources devoted to managerial tasks) is an important design
consideration. Under extreme cases, the communication over-
head of discovery can reduce the effective use of network
resources to an unacceptable level. In a large-scale service
infrastructure, the discovery service should be able to cope
with a large amount of consumer requests. Hence, we need to
consider the challenges of optimizing the communication
overhead and providing load balancing. It would be ideal to
evaluate and compare all of the examined discovery systems
based on a quantitative set of performance measures or
benchmarks. Unfortunately, there are no comprehensive
benchmarks or evaluation measurements of service discovery
approaches; existing works do not cover a large enough set of
discovery systems and are aimed at very limited application
scenarios. It is difficult to define a set of objective perfor-
mance measures that are universally applicable to all discov-
ery systems, and even more difficult to quantitatively evaluate

■ Figure 1. Service discovery systems: concepts and issues.

Bootstrapping - Communication model
- Involved entities

Service handle
retrieval

Type of the service
handle

Service
advertisement

- Communication model
- Directory/advertised
 information
- Advertisement
 persistence

Querying - Query expressiveness
- Communication model
- Routing model
- Lookup method
- Query result

Issues (discovery process)

Architecture Distribution of the
directory information

Effectiveness - Correctness
- Completeness

Fault-tolerance - Points of failure
- Recovery method

Performance - Communication overhead
- Load balancing

Scalability Ability to handle large
number of clients/services
in large networks

Platform/network
independency

- Platform dependency
- Network dependency

Standardization Standards and existing
implementations

Interoperability - Ability to interoperate
 with other systems
- Non-interoperation reasons

Security - Authentication
- Authorization
- Privacy
- Data integrity

General issues (discovery process)

Service

List of matching
services and handles

Select suitable
service

Directory Directory

Directory

Service
Client

Client

Selection

Registration

Service
ID and

description

Find directory
2

Lookup
4Request

3

6

Reply
5

Bootstrapping
1

IEEE Communications Surveys & Tutorials • 4th Quarter 2007 5

them in a largescale settings. In this article we focus our
attention instead on providing good set of qualitative evalua-
tions of the systems, and to provide objective descriptions that
could indicate their performance from an architectural point
of view. To this end, we examine the amount of communica-
tion overhead involved in the discovery process, which affects
both the utilization of underlying network resources and the
latency of query response. We also look at the treatment of
load balancing.

Our discussion (and specifically in Tables 5, 6 and 7) uses
the qualitative terms of high, moderate, and low to express
performance measures in terms of communication overhead.
High communication overhead implies that extensive commu-
nication cost is involved, for example when broadcasting query
messages and responses. Moderate overhead means a moder-
ate use of network resources, for example, multicasting query
messages to small groups. Finally, low overhead is generated
by operations that are very resource conscious, for example,
point to point communication between users/services and a
directory.

SECURITY

Security issues in a single administrative domain can be
addressed using intra-domain security policy mechanisms.
However, security concerns in large-scale and multi-domain
environment are both more challenging and more critical,
since the system is exposed to a much larger population of
potential attackers, and security policies are harder to enforce.
How can user identity be verified and its access controlled?
How can we ensure crucial discovery or service data are not
tempered with? How can user be assured that its sensitive
data are protected from prying eyes and its identity hidden
from other unauthorized users? These issues are significantly
more challenging and critical in a large-scale and multi-
domain environment.

In this respect, we look at how each discovery system han-
dles the following security aspects: user authentication/ autho-
rization, data integrity, and privacy of sensitive data. For each
discovery system, we examine how it copes with these aspects
and where it lacks security measures.

SCALABILITY

Many of the existing discovery approaches are designed with a

particular target infrastructure size in mind, regarding net-
work size and number of consumers and services supported.
Our consideration of scale pertains to “large size” networks
and global service infrastructures with hundreds of thousands
of users and end systems. This criterion examines the targeted
infrastructure size of each systems and allows us to evaluate
the ability of discovery systems to cope with large scale net-
works.

PLATFORM AND NETWORK INDEPENDENCE

A strong dependence on specific technologies may prevent a
discovery system from being deployed in multi-domain envi-
ronments which are likely to use different platforms and net-
working technologies. Looking at the dependencies of
discovery systems on particular software platforms or network
technologies allow us to evaluate their ability to operate in a
multi-domain environment.

INTEROPERABILITY WITH OTHER DISCOVERY SERVICES

For a discovery system to operate over existing infrastructure
across multiple domains, it must interoperate with other
(potentially heterogeneous) discovery systems. We examine
the ability of each discovery approach to interoperate with
others, and identify the reasons that may allow or prevent
their interoperation.

STANDARDIZATION AND EXISTING IMPLEMENTATION

This criterion gives a good indication of the maintainability
and future outlook of a discovery service. Standardization and
the presence of existing implementation may ease the inclu-
sion of a particular discovery service in a large-scale service
infrastructure.

TECHNOLOGY OVERVIEW

This section provides an overview of the architecture design
and the discovery process proposed by each approach. We
view service discovery as a four-step process (Fig. 1);
• Bootstrapping, where clients and services attempt to initi-

ate the discovery process via establishing the first point
of contact within the system

■ Table 1. Suitability of representative approaches against the selected set of criteria.

Salutation SDS SLP Jini INS UPnP WS/GS JXTA INS/Twine Splendor P2P

Architecture √ √ √

Effectiveness √ √

Fault-tolerance √ √ √

Performance √ √ √

Security √ √

Platform and network
independence

√ √ √ √

Scalability √ √

Interoperability √ √

Standardization √ √ √ √ √ √

IEEE Communications Surveys & Tutorials • 4th Quarter 20076

• Service advertisement, where a service provider publishes
information about the provided services

• Querying, where a client looks for a desired service
• Service handle retrieval, the final step in the discovery

mechanism, where a client receives the means to access
the requested service
Note that some of these steps may be omitted in various

discovery approaches. This Section will describe how these
steps are implemented. For each described step of the discov-
ery process, we will concentrate on some specific features or
issues as listed in Fig. 1, e.g. at the querying step, we will dis-
cuss the expressiveness of the request, the communication
model, the routing model, the lookup method and the query
result. We will hence highlight the major characteristics of
each approach.

As discussed earlier, the chosen criteria are the most
important ones for large-scale, cross-domain service discovery.
In this section we examine the discovery approaches that pro-
vide a suitable solution for one or more criteria presented
earlier. We have chosen only a minimal set of approaches to
keep the survey concise, while representing the state of the art
in the field. Table 1 presents the suitability of the selected set
of service discovery approaches against the selected set of cri-
teria. A check-mark in row R and column C indicates that
approach C is a good fit for criterion R. There exists a num-
ber of discovery approaches other than the ones discussed in
this survey. These approaches either focus on the issues that
are out of the scope of this survey, or they do not provide bet-
ter solution than the selected approaches. For example, con-
text-aware service discovery has been considered in [12] and
[13]. Many service discovery systems assume single hop (e.g.
Bluetooth [6] and Deap-space [7]) or multi-hop (e.g. Konark
[8]) ad hoc wireless networks. For our envisioned wide-area,
multi-domain service discovery, neither context-awareness nor
ad hoc environment support are of significant importance. To
keep the survey focused we have not considered these
approaches. In essence, we have selected the most prominent
service discovery approaches, from industry and academia,
that we consider to be potential candidate for our envisioned
large scale, multi-domain service discovery system.

SALUTATION

Salutation [14, 15], a product of the Salutation Consortium
which was founded in 1995, is a service discovery system that
targets heterogeneous environments of widespread connectivi-
ty and mobility. From an architectural point of view, Saluta-
tion is a decentralized system based on a core entity called
Salutation Manager (SLM). Each Salutation-enabled device
implements a local SLM. An SLM stores and maintains infor-
mation about local services, acting as a service broker for
local clients. It collaborates with remote SLMs in order to
exchange the capabilities of registered services. SLMs discover
each other and communicate even if they act on top of differ-
ent transport media. These functionalities are ensured by
transport-dependent modules called Transport Managers, as
shown in Fig. 2.

In order to enable communication among SLMs, each
SLM maintains the list of identifiers of remote SLMs, while
the Transport Manager maintains the association between the
identifiers of remote SLMs and their corresponding transport
addresses. Each SLM is identified by a Universal Unique
Identifier (UUID) [16]. If the Transport Manager has no a
priori knowledge about existing remote SLMs, it can discover
them either by broadcasting a discovery request, to which
remote SLMs may respond, or by inquiring a central reposito-
ry (if it exists) that would maintain information about Saluta-
tion enabled devices.

Salutation Managers can also be involved in managing ses-
sions between clients and remote services. Communications
between SLMs use Remote Procedure Call (RPC). The exact
protocol used is the Sun Microsystems Open Networking
Computing Remote Procedure Call version 2 [17].

Bootstrapping — Salutation defines the SLM-API (Fig. 2),
an application programming interface provided by the Saluta-
tion Manager to develop Salutation applications.
On startup, Salutation clients and services invoke the SLMAPI
to associate with the local or the nearest available SLM. The
association process consists in registering the functional units
corresponding to the client or service. In Salutation architec-
ture, functional units are used to define all service functions,
as well as certain client functions.

When there is no local SLM, then the SLM-API of a

■ Figure 2. Salutation architecture.

Client FU

SLM

Transport
manager (TM)

RPC

Transport

3 2

Client FU

SLM

TM
xxx FU Functional

unit

SLM-API

SLM-transport interface

Remote functional
unit (FU) records

Transport

1

1

Local FU records

Service
advertisement

2 Query request

3 Query response

Client FU

TM

Salutation manager
(SLM)

Transport Transport

Network 2
Network 1

TM

3 2

Service FU

1

RPC

remote SLM is invoked through RPC.

Service Advertisement — A service advertises itself by regis-
tering with the SLM a description record using the hard-state
model. This record follows the ASN.1 (Abstract Syntax Nota-
tion One) from OSI as per the notation/encoding scheme and
is composed of one or more functional units. Each functional
unit represents a description of a functionality of the service
and contains a handle to that functionality.

Querying — The querying process is handled by the SLM
with which a client is associated; the client may first ask its
SLM to find out which SLMs provide a desired service, i.e.
the service that matches the description record provided by
the client, and finally select one and ask its SLM to retrieve
the description record from that selected SLM.

SLMs have the possibility to cache remote service descrip-
tions. In that way, an SLM can respond to its associated
clients’ queries with the cached descriptions. However, since
service registration is hard-state, and there is no explicit way
to refresh remote caches, the consistency of remote caches
and then the accuracy of a response based on the local SLM’s
cache is not guaranteed. Instead of lease-based service regis-
trations, SLMs can be asked by clients to periodically check
the availability of service functional units.

Service Handle Retrieval — Clients receive handles to func-
tional units in response to their queries. Salutation Managers
may be involved in managing sessions between clients and
remote services.

The interoperation of heterogeneous devices is the primary
concern of the Salutation framework. Beyond, abstracting the
transports through the use of Transport Managers, Salutation
also provides a lighter version, called Salutation-Lite [18], that
targets small devices with restricted capabilities. These consid-
erations are important in a multi-domain environment. How-
ever, conceptually, Salutation is not designed for large

networks, and its deployment is currently restricted to office
automation products like fax machines, printers, copiers, and
scanners.

SECURE SERVICE DISCOVERY SERVICE (SDS)

The Secure Service Discovery Service [19] (sometimes abbre-
viated as SSDS) was designed and developed by the Comput-
er Science Division, University of California, Berkeley, in
1999. SDS is a research project and aims to achieve security
and wide area support.

Besides services and clients, the SDS architecture is com-
posed of the following three components:
• SDS servers are directory agents, arranged into a treelike

hierarchical structure. Each SDS server gathers service
descriptions from services or child SDS servers in the
form of Bloom filters [20]; aggregates these advertise-
ments using bit-wise OR; and propagates the aggregated
Bloom filters to its parent. SDS allows multiple hierar-
chies to co-exist. A SDS server can simultaneously partic-
ipate in multiple hierarchies by maintaining multiple sets
of parent-child pointers. These hierarchies can be based
on administrative domains, network topology, geographic
location etc.

• Certificate authority is a trusted central component
responsible for verifying the digital signatures used to
establish the identities of different components in the
SDS architecture.

• Capability manager (CM) uses capabilities (access rights)
for controlling the visibility of a class of service to a prin-
cipal (set of users, e.g. students of physics department).
Capabilities are signed messages, indicating that a partic-
ular class of service descriptions can be discovered by the
users from a particular principal.
In SDS architecture all of these three components are

trusted entities which use authentication and encryption for
security measures. Communications between different entities
in the system are authenticated, whenever necessary. SDS
relies on soft state technique for service advertisements and
capabilities. Service advertisements are encrypted using a
hybrid public key/symmetric key mechanism. Message header
contains a symmetric key, and is encrypted with the public key
of the receiving SDS server. Message body, on the other hand,
is encrypted with the symmetric key embedded in the message
header. This allows faster decryption of the message body
using symmetric key technique, rather than using slower pub-
lic/private key decryption for the whole message. SDS uses
XML documents for describing both service descriptions and
queries.

Bootstrapping — SDS servers periodically announce their
existence on a globally known multicast channel. Such
announcements include information like:
• The list of administrative or network domains the SDS

server is responsible for
• The multicast address to use for service advertisement
• The desired service advertisement rate
• The contact information for the Certificate Authority
• The contact information for the Capability Manager

Services and clients have to continuously listen on the SDS
multicast channel to learn these information and eventually to
join the system.

Service Advertisement — A service has to continuously lis-
ten to the SDS multicast channel to find the appropriate SDS
server for its advertisements (Fig. 3). Finding the correct SDS
server is not a one-time task because new SDS servers can

IEEE Communications Surveys & Tutorials • 4th Quarter 2007 7

■ Figure 3. SDS architecture. (1),(a) SDS server announcements
on multicast channel; (2) Secured advertisement by service; (3)
Announcement of access control list (<principal, service class>
pairs) by service; (b) client learns its capabilities form CM; (c)
client submits query and its capabilities to SDS server CM acts
as a mediator for propagating capabilities from services to
clients.

a

b
2

3

1

c

Davis Center
SDS server

To higher levels

Third floor
SDS server

NetLab
SDS server

Joe’s PDA
client

NetLab e-mail
service

Capability
manager

Certificate
authority

Second floor
SDS server

IEEE Communications Surveys & Tutorials • 4th Quarter 20078

appear or existing SDS servers may crash.
After determining the appropriate SDS server, the service

has to multicast its service description using the hybrid pub-
lic/symmetric key technique, using the public key of the select-
ed SDS server for encryption. The service has to contact the
capability manager and inform the list of principals allowed to
discover the service.

Querying — A client communicates with a SDS server using
Authenticated RMI (remote method invocation) and submits
a query (in XML) along with its access rights. The SDS server
searches its local database and returns all the service descrip-
tions matching the query and the client’s capabilities. The
SDS server forwards the query to its parent, in case no match
is found in the local database.

Service Handle Retrieval — As a result of a
successful discovery process the client obtains a
set of XML documents representing the descrip-
tions of the matching services. A typical service
description includes the location of the service,
expiry time of the advertisement, Java RMI
address of the service, and other functional and
non-functional attributes of the service.

SLP

Service Location Protocol (SLP) [21, 22] was
introduced by the IETF SVRLOC Working
Group and initiated in 1997. SLPv2 is the last
version of SLP and was standardized in 1999.

SLP was conceived as a lightweight, open and scalable pro-
tocol for service discovery, and is generally intended to func-
tion within IP networks under single administrative control,
i.e. enterprise-like networks. It follows a hybrid architecture,
where decentralized and centralized, directory-based and non-
directory-based architectures are possible and can coexist. The
directory-based architecture relies on a Directory Agent (DA)
that takes care of registering services and responding to
queries. Two other entities also participate in the discovery
process; a User Agent (UA) that acts on the consumer’s
behalf, and a Service Agent (SA) that acts on the service
provider’s behalf.

SLP introduces the notion of scope. The primary use of
scopes is to provide the ability to create administrative group-
ings of services. A consumer seeking services is configured to
use one or more scopes; it will only be able to discover the
services that belong to its scopes, as shown in Fig. 4. By con-

■ Figure 4. SLP architecture.

SAY

SAX

SAX

SAY

UAY

UAXY

UAX

UA User agent

SA Service agent

DA Directory
agent

Advertisement
Query request
Unicast (solid
line)
Multicast
(dotted line)

DAX

DAX

Scope Y

Scope X

SAXY

■ Figure 5. SLP directory agent discovery.

Directory agent
advertisement (DAAdvert)
(Multicast)

Administrator

Broadcast

(a) DHCP-based directory
agent discovery

DHCP
server

SA

Opt. 78

UA

SA

UA

DAAdvert (unicast)

Service request (srvRqst)
(multicast)

DA

DAAdvert

DAAdvert

(b) Passive directory agent
discovery

Multicast

SA

UA

DA

URL

Scope-list

...

DAAdvert

DAAdvert

(c) Active directory agent
discovery

Unicast

Multicast

SrvRqst

IEEE Communications Surveys & Tutorials • 4th Quarter 2007 9

figuring UAs and SAs with scopes, administrators may provi-
sion services.

Bootstrapping — When bootstrapping, UAs and SAs may or
may not have pre-configured scopes. In the latter case, a UA
or SA can get its scope list in response to a DHCP request,
when the DHCP SLP Service Scope Option [23] is used. On
the other hand, when a UA is configured with a “NO SCOPE”
value, the UA is assumed to obtain its own selection of
scopes. This is similar to Samba’s user-selected workgroups.

Once configured with scopes, the UAs and SAs need to
contact DAs. When access to DA is not pre-configured, UAs
and SAs can use the following methods of locating a DA:
DHCP-based configuration, DA active discovery, and DA pas-
sive discovery. The DHCP-based configuration consists in tak-
ing advantage of the DHCP SLP Directory Agent Option
(referred to as option number 78) [23] to retrieve the list of
IP addresses for DAs within specific scopes. The DA active
discovery is performed by initiating a multicast DA request
(or broadcast if multicast is not supported); UAs and DAs
may get unicast responses from DAs within their scopes.
Finally, DA passive discovery consists of listening to the DA
advertisement messages multicasted (or broadcasted) over the
network. Figure 5 shows these three DA discovery processes.

Service Advertisement — If a DA is associated to a scope,
then all SAs belonging to that scope must register their ser-
vices with the associated DA as per a soft-state model. A reg-
istration contains the type of the service, its URL and a set of
descriptive attribute-values pairs. Service types and attributes
may be vendor-specific or assigned by a naming authority,
which is the Internet Assigned Numbers Authority (IANA) by
default [24, 25].

Querying — When a UA is configured with a scope that con-
tains a DA, then the queries must be unicasted to that DA.
Queries may contain the type of the desired service, and a
number of predicates over its descriptive attributes. These
predicates follow the LDAPv3 search filter format.

The following is a generic example of an SLP request.
Assuming that a user u needs to access a service srv, and that
it is associated with two scopes Scp and DEFAULT, the query
looks like the following:

<t>=service:srv <s>=Scp,DEFAULT <p>=(user=u)

Here < t > indicates the requested service type, < s >

gives the < scope – list > and < p > is the predicate
string, i.e. the list of predicates over service attributes.

Queries are matched against registrations. However, if no
DA is associated with a scope, then the UAs and SAs belong-
ing to that scope interact directly; UAs multicast queries
according to the SLP-specific multicast convergence algorithm
[21], and receive back responses from SAs.

Service Handle Retrieval — The URLs of matching services
are returned to the consumer as access points to these ser-
vices.

In addition to the flexibility and lightweight of the architec-
ture, SLP also presents interesting features in terms of perfor-
mance and security, as we will see later. Being an IETF
standard, SLP is relatively widely implemented and commer-
cialized. In addition to several office and networking devices,
several platforms support SLP, including Sun, Caldera, Novel,
and Apple.

JINI

Jini [26] was introduced by Sun Microsystems in 1998. The
Jini Community was initially established in January 1999 with
the release of the first version of the Jini Technology Starter
Kit from Sun Microsystems. The last version of the Jini Tech-
nology Starter Kit has been released in February 2004.

Jini aims to provide a platform for dynamically creating
networked components, applications, and services. It typically
targets enterprise environments.

Similarly to SLP, Jini allows different architectures to be
implemented. It provides a Lookup Service (LUS) that acts as
a Directory Agent. Again similarly to SLP, all Jini entities are
“scoped”; they are grouped into federations called “djinns.”

Bootstrapping — On bootstrapping, clients and service pro-
viders try to discover the LUS associated to the “djinn” they
belong to. This may be done either through the multicast
announcement protocol, i.e. by listening to the multicasted
LUS advertisements, or through the multicast request protocol,
i.e. by sending multicast requests for Lookup Services.

Service Advertisement — Once a LUS is found, services reg-
ister with it. Registrations are lease-based. A registered record
is an instance of the serviceItem Java class shown below:

public class ServiceItem implements Serializ-
able {
public ServiceItem(
ServiceID serviceID,
Object service,
Entry[] attributeSets)
{...}
public ServiceID serviceID;
public Object service;
public Entry[] attributeSets;
}

A service registration contains the service assigned UUID
(serviceID), a proxy-object (service) and a set of attributevalue
pairs describing the service (attributeSets).

Querying — When a LUS is found, client’s queries are sent
to that LUS using Remote Method Invocation (RMI). A
query object is an instance of the following ServiceTemplate
Java class:

public class ServiceTemplate
implements Serializable {
public ServiceTemplate(
ServiceID serviceID,
Class[] serviceTypes,
Entry[] attributeSetTemplates)
{...}
public ServiceID serviceID;
public Class[] serviceTypes;
public Entry[] attributeSetTemplates;
}

where serviceID refers to the UUID of the requested service.
The serviceTypes include the list of Java classes the service
may be an instance of, and attributeSetTemplates is a set of
attribute-value pairs describing the requested service.

The LUS matches the query against the registered records.
A registered record (item) matches a query object (tmpl) if
item.serviceID equals tmpl.serviceID (or if tmpl.serviceID is
null), item.service is an instance of every type in tmpl.service-
Types, and item.attributeSets contains at least one matching

IEEE Communications Surveys & Tutorials • 4th Quarter 200710

entry for each entry template in tmpl.attributeSetTemplates.
This pattern matching ensures the accuracy and the complete-
ness of the query result in the limit of the number of respons-
es the client may wish to receive, and of the scope of the
associated “djinn.” A filter may also be implemented in the
client side in order to make a selection over the received
responses.

It is worth noting that if no LUS can be reached, a client
may act in its place, provided that LUS functionalities are

implemented on the client side. In this case, the client sends a
LUS multicast announcement so that service providers can
register with it. The client can then select from these adver-
tisements the ones it is interested in. This mechanism is com-
monly known as peer lookup. It should be noted that, the
client uses peer lookup only to discover services; it neither
starts functioning as a LUS, nor responds to service discovery
requests from other clients. In peer lookup mode, communi-
cation between services and clients starts over multicast com-

■ Figure 6. Jini discovery process.

1

JVM

Client
object

JVM

Service
object

JVM

Service
object

JVM

Service
object

JVM

Lookup
service

2

JVM
Proxy

Service ID
Types

Attributes

Query
(RMI)

Client
object

3

JVM
Proxy

Client
object

Service ID
Types

Attributes

Register
(RMI)

Service ID
Types

Attributes

Response (RMI)

JVM

Lookup
service

JVM

Invoke (RMI)

(1) Service registration and service request,
(2) Response to query, (3) Service invocation

Lookup
service

■ Figure 7. INS architecture and discovery modes.

Early binding discovery
Late binding discovery (intentional anycast)
Late binding discovery (intentional multicast)
Intentional name advertisement

Network
location

Intentional
name + data

Intentional
name + data

Intentional
name

Client

Client

DSR
Service

Service

Service

Client

INR INR

INR

INR

Data

Data

Advertised
intentional name

INR

INR
INR INR

INR

munication channel similar to that of SLP DA-less mode.

Service Handle Retrieval — The client receives one or more
than one instances of the ServiceItem class, each referring to
a service matching the client’s request. When the response
contains a proxy-object, this one is used as a service handle to
access the service through RMI. The discovery process and
the access to the service are shown in Fig. 6.

The use of Java technology, and hence Java Virtual
Machines, abstracts the underlying transports and platforms.
Jini also takes advantage from major Java community achieve-
ments such as RMI which provides code mobility, and lately,
the Davis project [27] a Java-based security framework which
addresses major security issues (authentication, authorization,
integrity and confidentiality). In addition to these features,
Jini provides an event notification mechanism that allows
objects to be triggered.

INS

Intentional Naming System (INS) [28] was introduced by the
MIT Laboratory for Computer Science in 1999. It provides
protocols for service naming and discovery in dynamically
changing and mobile networks.

INS discovery system is performed using an application
level overlay network of participating directory agents called
Intentional Name Resolvers (INRs) (Fig. 7). The directory
information is distributed among the INRs.

For bootstrapping INRs, a centralized agent called Domain
Space Resolver (DSR) is used. This agent keeps track of all
active INRs in the system and provides this list to each joining
INR. Upon joining the network, an INR selects another INR
as its neighbor based on the shortest round-trip time required
to ping each active INR in the system. This mechanism
enables the resolver network to maintain a spanning tree

topology. The INRs can join or leave the system dynamically
and self-organize into a spanning tree. The spanning tree
topology is used for application-level multicasting and for
propagating advertisement information.

Bootstrapping — The bootstrapping of consumers and ser-
vice providers is not considered; they are assumed to know
the IP address and the port number on which INRs are listen-
ing.

Service Advertisement — On startup, service providers reg-
ister their services with an INR, according to a soft-state
model, by providing both a name-specifier and a name-record.
The former consists of a descriptive name that is composed of
attribute-value pairs with a hierarchical tree-like relationship.
The latter contains complementary information about the ser-
vice (like the IP address and port number of the service, the
requested transport protocol, the service lifetime, etc.) that
may be returned to the clients in response to their queries.
For better responsiveness to client queries, service advertise-
ments are replicated in each INR. To keep each replica con-
sistent, INRs exchange information in regular intervals.
Triggered updates may also be implemented.

All the name-specifiers known to an INR are stored in a
tree-like data structure called a name-tree, which is effectively
an attribute-wise union of all the name-specifiers; for example
if two name-specifiers have a common attribute x at the same
level with values A and B respectively then, in the name-tree
A and B, are placed as children of x. The leaf nodes in a
name-tree point to the name-records that were advertised
with the name-specifiers. An example of name-tree is shown
in Fig. 8.

Querying — The same name-specifier scheme is used in
queries to describe the requested service. Clients also specify

IEEE Communications Surveys & Tutorials • 4th Quarter 2007 11

■ Figure 8. INS discovery mechanism.

3335

Room
dpi Type

Public
Print

DC

Building Service Access

Root

360x180 Color

Name-specifier

Room

*

DC Print Public

Building Service Access

Root

Root

Service Access

PrivatePublicCamera
Print

Room

3245
Network addr.

Transport type

AnnouncerID

Next hop INRs

Metrics

Expiration time

3335

Name-record

3356 360

x180

600
x300 Color B&W

dpi Type

DCMC

Building

Client

Name-records

Query Advertisement
(name-specifier +

name-record)

INR

Name-record

Name-tree

Service

IEEE Communications Surveys & Tutorials • 4th Quarter 200712

in their queries the expected behavior of the consulted INR;
they expect either to receive the matching service namere-
cords (early binding discovery mode), or the matching service
to be contacted on their behalf (late binding mode). In this
last mode, the client’s query also contains the data that will be
forwarded to the service. The INR may contact either a
selected matching service based on client’s metrics, issuing
what is called intentional anycast, or may forward client’s data
to all matching services, by a process called intentional multi-
cast. Figure 7 illustrates INS discovery processes.

Upon receiving a query, an INR browses the entire stored
name-tree in order to look for the matching name-records.
The complexity of the lookup process is O(na

d/2) [29] where
na is the total number of attributes and d is the depth of the
name-tree. Hence, the lookup process does not scale well with
increased number of name-specifiers and attributes. In addi-
tion, the storage space needed to store the name-tree increas-
es rapidly with the number of non-identical name-specifiers
and attributes.

Service Handle Retrieval — When early binding is used, the
client receives in response to its query one or several namere-
cords corresponding to instances of the requested service. A
name-record contains the following information:
• Network address of the service, i.e. IP address and port

number.

• Transport-type (e.g., TCP, HTTP, RTP
etc.) supported by the service. This is
used by the client to implement early
binding.

• AnnouncerID, a unique identifier of a
service, constructed from host IP address
and the service creation time. Announc-
erID is used to distinguish between ser-
vices advertising the same name-specifier
and residing in the same host.

• A set of routes to next-hop INRs and the
metrics for each route (e.g. hop-count,
transmission delay etc.). This information
is used for intentional multicasting.

• Service provider metrics (e.g. average
load), used for service selection in any-
cast mode of discovery.

• Expiration time of the name-record.
INS presents a unique discovery architec-

ture and an interesting service naming
scheme. However, it is a relatively heavy consumer of storage-
space, computation and bandwidth, which raises a scalability
issue. INS/Twine [29] has been designed as an enhancement
for INS especially in terms of performance and scalability.

UPNP

UPnP [30], publicized primarily by Microsoft, is maintained by
the UPnP Forum which was founded in 1999. The first version
of the UPnP device architecture was released in 2000. A
recent update, dated in 2003, is still at proposal status. UPnP
technology provides a decentralized, open networking archi-
tecture that uses TCP/IP and Web technologies (like HTTP
and the eXtensible Markup Language (XML) [31]) to enable
seamless proximity networking [30] in managed and unmanaged
small networks. UPnP uses the Simple Service Discovery Pro-
tocol (SSDP) [32] to discover and to announce services. This
protocol was presented to the IETF by members of the UPnP
Forum. However it is still a draft and has not been standard-
ized yet.

UPnP is a fully decentralized peer-to-peer approach. UPnP
devices announce themselves and their supported services on
the network. Control Points, which act on the consumer’s
behalf, catch the interesting announcements and can also initi-
ate queries based on consumer’s needs.

■ Table 2. A taxonomy of web service discovery architectures.

Centralized
Registry Authoritative, centrally controlled store of service descriptions, e.g. UDDI registry [36]

Index Non-authoritative, centralized repository of references to service providers; see [1] for details.

Decentralized

Federation Publicly available UDDI nodes collaborates to form a federation and acts together as a huge virtual UDDI
registry [38].

P2P-based

Semantic
In [39] peers are arranged into hypercube and ontology is being used to facilitate effi-
cient and semantically-enabled discovery. Another approach [40] presents agent-based
solution and uses DAML representation for ontology.

Non-semantic

Both [41] and [42] uses Chord [43] overlay for indexing and locating service informa-
tion. These approaches vary in the method of mapping service descriptions into index-
es. [41] extracts keywords from service descriptions and uses MD5 hashing. [42] uses
Hilbert Space Filling Curves for mapping similar service descriptions to nearby nodes in
Chord ring.

■ Figure 9. UPnP architecture and discovery process.

Device

Service

Advertisement

Control point

Multicast

Unicast

Control point Control point

Service
response

Service Service

Service
request

Device 1

Service

Device n

Root device Root device

IEEE Communications Surveys & Tutorials • 4th Quarter 2007 13

Bootstrapping — In contrast with other discovery systems,
UPnP acts on a lower level. It addresses for example the
problem of automatic assignment of IP addresses which is
basically assumed in IP-based discovery systems. On startup, a
UPnP device will attempt to obtain an IP address before issu-
ing announcements and queries. The specification recom-
mends the use of DHCP or Auto-IP [33] (when no DHCP
server can be reached). With Auto-IP, an entity chooses a
random IP address in the range “169.254.x.x/16,” verifies that
it is not already assigned to an entity in the network (by
broadcasting Address Resolution Protocol (ARP) requests)
and assigns the address to itself if not already assigned.

Service Advertisement — As shown in Fig. 9, a device
announces itself and its embedded devices and services by
sending multicast advertisements over the network. These
advertisements are associated with a lifetime and contain typi-
cally the type of the advertised service or device, and a URL
that refers to where the full description of the advertised enti-
ty can be retrieved. The number of advertisements that reach
a control point is tightly dependent on the time-to-live (TTL)
values set for the multicast query and announcement mes-
sages (UPnP recommends setting the TTL value to 4, for bet-
ter performance).

Querying — In addition to service announcements, queries
may also be multicasted by control points over the network.
They are typically based on the type of the requested device
or service. Standard device and service types are assigned by a
naming authority (the UPnP Forum by default). When a
device receives a query, it matches it against itself and its
embedded services and devices. Responses to queries are uni-
casted to the requesting control point.

Service Handle Retrieval — Similarly to Jini, UPnP pro-
vides an event notification mechanism to trigger service
updates. UPnP also addresses the requirements of unmanaged
and spontaneous networks trough the use of the IP auto con-
figuration mechanism and the use of both queries and sponta-
neous announcements at the discovery step. However,
important features like security and scalability are not consid-
ered in the UPnP design. Nevertheless, UPnP has been widely
adopted and implemented. It is part of the Microsoft operat-

ing system Windows XP, and a few gateway products, includ-
ing Linksys and D-Link, implement the UPnP technology as
well.

WEB SERVICE AND GRID SERVICE DISCOVERY APPROACH

Web Services [1] provide a standard way of interoperating
between different software applications, running on a variety
of platforms and/or frameworks. Grid Services are specialized
stateful Web Services with additional Grid interfaces, initially
designed for creating a virtual organization where resources
and services can be shared seamlessly in a relatively small
community distributed across large-scale networks. In this sec-
tion, we extend our discussion to include Grid Services.

The core of Web Services and Grid Services is the use of
XML, SOAP, and respectively Web Service Description Lan-
guage (WSDL) [34] and Grid Web Service Description Language
(GWSDL) in Open Grid Service Architecture (OGSA) [35].

The OGSA adopts a centralized approach for service dis-
covery, whereas service discovery is left open and various ser-
vice discovery mechanisms are proposed for the Web Service
architecture. Universal Description, Discovery and Integration
(UDDI) [36], is the de facto standard for Web Service discov-
ery. Many research activities are devoted to enhancing and
overriding the legacy UDDI specification for thriving efficien-
cy, scalability and flexibility in the discovery mechanism. Table
2 summarizes some of the proposed architectures for web ser-
vice discovery. More detailed survey of such activities can be
found in [37].

Bootstrapping — The bootstrapping step is not addressed;
the location of the directory is assumed to be well-known to
the consumers and service providers.

Service Advertisement — Service providers first prepare the
XML-based WSDL documents (respectively GWSDL docu-
ments in OGSA) which model and describe information about
the service before registering it with the directory. In UDDI,
the registered WSDL document models information about the
organization that provides the service and the service itself
(e.g., name, access points, operations). This is done according
to the UDDI data model [36]. There are several basic compo-
nents inside the data model (Fig. 10: BusinessEntity (white

■ Figure 10. UDDI discovery mechanism.

Registered information about
business meant for client s/w

WSDL

2

3

1

UDDI
registry

SO
A

P

U
se

r
se

rv
ic

e
ba

se
d

on
se

rv
ic

e
de

sc
ri

pt
io

n

Requester
(client)

UDDU
get service description

UDDU
discover service

UDDU
publish service description

Publisher
(service)

White
page Name, address

etc.

Yellow
page Industrial

category

Green
page

Technical information
about services

WSDL

4

pages), BusinessService (yellow pages), BindingTemplate
(green pages), and tModel (allows the use of external web ser-
vice reference such as a WSDL document). UUID keys can
be assigned to each business entity, service, binding template,
or tModel.

Since Web Services are stateless, registration is done
according to a hard-state model in UDDI, whereas in OGSA,
registrations are soft-state and each service instance has three
time stamps (goodFrom, goodUntil, notGoodAfter) associated
with the service data element.

Querying — Queries are keyword-based and follow the XML
format. Querying in the UDDI registry approach is very rudi-
mentary and only key lookups with primitive qualifiers are
supported. In OGSA, however, more powerful XQuery1 [44]
support has been implemented to facilitate querying and
selection.

Responses to queries are ensured to be accurate and com-
plete since the registry has the full control over the informa-
tion stored inside the registry. The completeness of discovery

is guaranteed since all the registry entries can be searched.

Service Handle Retrieval — The result of querying in Web
Services and Grid Services is often a list of all service descrip-
tions (in XML format). A set of attributes can be used to
describe the business entity and the services they offer. Ser-
vices then can be invoked through the service handles or
access points defined in the UDDI entry. These access points
usually take the form of URLs.

In OGSA, the Grid Service Handle (GSH) takes the form
of a valid URI [45] that may follow the http-GSH2 scheme
[35]. A GSH is resolved into a WSDL encoded Grid Service
Reference (GSR). OGSA uses a factory approach for creating
a stateful Grid Service instance. This means each client will be
associated to its own service instance. The factory interface
for creating a specific service instance is standardized and this
information is included in the GSR. A new service instance
then can be created and accessed by the customer as described
in the GSR.

UDDI and OGSA present the advantage of using standard

IEEE Communications Surveys & Tutorials • 4th Quarter 200714

■ Table 4. JXTA protocols.

Peer Discovery Protocol allows a peer to advertise its own resources and discover the resources provided by the other peers. A
resource is represented in a XML document, and published using an advertisement.

Peer Resolver Protocol implements a request/response protocol that allows a peer to send queries to a specific peer or to the
PeerGroup and receive responses to its query.

Peer Information Protocol allows a peer to obtain information about other peers (e.g., state, traffic load,capabilities).

Peer Binding Protocol allows a peer to establish a virtual communication channel (i.e., pipe) with one or more peers by binding
endpoints.

Endpoint Routing Protocol used to determine the route between two endpoints, i.e., the intermediary peers that will route a mes-
sage when there is no direct route between the source and the destination.

Rendezvous Protocol
allows messages to be propagated within a PeerGroup. Within a peer group, peers can be either ren-
dezvous peers or peers that are listening to rendezvous peers. Rendezvous peers are responsible for
propagating messages to the associated peers.

■ Table 3. JXTA core services.

Membership Service
used by the current peer group members to reject or accept a new group membership application. It may
enforce a vote of peers or elect a designated group representative to accept or reject new membership
requests.

Discovery Service provides peer, group and other advertisements.

Monitoring Service allows a peer to get information about another peer’s status.

Resolver Service used to send queries throughout the P2P network. It is used by other services like Discovery Service, to dis-
tribute a discovery query to peers involved in the same group.

Endpoint Service
is basically the addressing mechanism used by peers to communicate with each other. Technically, the endpoint
service allows a communication to be established between peers using different communication protocols and
consequently different address schemes.

Pipe Service provides a virtual connection between peers involved in a communication.

Rendezvous Service acts as a proxy for queries over the network. Indexes over PeerGroup advertisements can be distributed among
the Rendezvous peers.

1 XQuery is a querying language with a similar purpose to SQL, but
designed for XML documents rather than relational databases.

2 A GSH may be a URI with an "http" scheme following the http URL syn-
tax. It may and not necessarily be resolved by an http GET mechanism.

IEEE Communications Surveys & Tutorials • 4th Quarter 2007 15

and well-known protocols that are independent from the
underlying network layer. The increasing interest in Web Ser-
vices and deployment of Web Service-based solutions in large-
scale environments, makes UDDI a promising candidate for
incorporating in a multi-domain service infrastructure.

JXTA

JXTA [46] is a P2P platform based on a set of services (Table
3) and six protocols (Table 4) to develop P2P applications.
Conceptually, JXTA provides a distributed model for peers to
discover each others and interact, and an infrastructure to
establish and manage routes and communications between
peers across heterogeneous large-scale networks. Peers on top
of the JXTA platform operate on an overlay network which
provides network transparency (Fig. 11).

Bootstrapping — Bootstrapping in JXTA entails joining a
PeerGroup. If the peer is not already configured with a group,
it must initiate a discovery process and then subscribe to the
group. Typically, on startup, a peer automatically belongs to a
generic PeerGroup (WorldPeerGroup or NetPeerGroup) that
has a generic implementation of JXTA standard and core ser-
vices like Peer Discovery and Peer Resolver. These services
are used to find the desired group, i.e a first peer belonging to
that group. If the peer subscription is accepted by the group,
the peer obtains an authenticator (Authentication Credential)
that allows it to join the group. At the end of the join step,
the peer obtains the membership service as implemented by
the group and a credential that the peer will use to authenti-
cate its messages.

Service Advertisement — In JXTA, services are defined by
Modules. JXTA associates to each Module three kinds of
advertisement: Module Class Advertisement, Module Specifi-
cation Advertisement and Module Implementation Advertise-
ment. These contain respectively a description of the service
behavior, means to invoke the service, or a reference to an
implementation of the service (i.e. where to find the code,
how to load it, etc.).

JXTA-enabled services are typically published using a
Module Specification Advertisement. A Module Specification
Advertisement may specify a communication channel through
a pipe advertisement that must be used by a peer to invoke the
service, a list of pre-determined messages that can be sent by
a peer to interact with the service, and references to an

authenticator and a local proxy for the service.

Querying — If the query cannot be resolved locally, i.e. no
match among the cached advertisements, it is then encapsulat-
ed in a Peer Resolver query to be sent over the PeerGroup.
When a PeerGroup implements the Rendezvous Protocol,
queries are sent to Rendezvous Peers. These peers are most
likely to cache an index over the requested service advertise-
ment. When a matching index is found, the Peer Rendezvous
Protocol is used by the Rendezvous peer to propagate the
query to associated peers, using the Pipe Service. This service
abstracts the underlying communication model. Even if the
underlying transport layer does not support a propagation
model (e.g. multicast), the Pipe Service emulates one by initi-
ation several point-to-point communications. However, if the
Rendezvous peer can not resolve the query, it propagates it
among other known Rendezvous peers (Fig. 12).

Queries are mapped to the cached advertisements in a way
that is not specified by the JXTA specification (the method is
implementation-dependent). Peers respond to the query with
a maximum number of responses as specified in the query.

Service Handle Retrieval — Peers receive in response to
their queries a number of service advertisements encoded in
XML. The service handle depends on the type of the adver-
tisement.

JXTA provides an open development platform for a ser-
vice infrastructure on top of large-scale and heterogeneous
networks. The peer-to-peer overlay allows the abstraction of
the network topology which is very useful to cross domain
interactions.

INS/TWINE

INS/Twine [29] was developed by the MIT Laboratory for
Computer Science in 2002 as an enhancement of INS.

INS/Twine acts similarly to INS. However, it uses the
Chord [43] (Appendix 1) indexing scheme at the INR overlay
for better performance and scalability. In contrast to the tree
topology used by INS, INRs form a chorded ring that follows
the Chord specification.

Bootstrapping — Similarly to INS, clients and service pro-
viders use a well-known network address of an INR in the sys-
tem for bootstrapping.

Service Advertisement — A service provider contacts an
INR to register its name-specifier and service information.
This INR splits the name-specifier into strands (path from
root to leaves), generates a 128-bit numeric key for each
strand using the Message Digest (MD5) [47] hash algorithm,
and uses Chord to distribute these keys in appropriate INRs
along with the information to which the key refers. For a bet-
ter tolerance for INR failures, a number of replicas of this
information are distributed among INRs. The INS/Twine
architecture is shown in Fig. 13.

Registrations follow both soft-state and hard-state models.
A service maintains soft-state registration with the INR with
which it directly communicates. This INR then takes the
responsibility of registering/deregistering the service explicitly
(i.e. hard-state method) with appropriate INRs in the Chord
ring.

Querying — A client constructs a (possibly partial) name
specifier (say n) based on its request and sends it to a known
INR (say Y). Y splits n into a set of strands (paths from root
to leaves) and converts the longest strand into a numeric key

■ Figure 11. JXTA architecture.

JXTA virtual
network

Peer

Peer

Peer

Peer
Peer

Peer
Peer

Peer

Physical network

PeerGroup

IEEE Communications Surveys & Tutorials • 4th Quarter 200716

using a hash function. Then it uses a consistent hashing tech-
nique to locate an INR (say Z) that possibly holds a resource
corresponding to the key (as done in Chord). Now, Z matches
n against the name-specifiers in its local database. If matches
are found, the discovered service descriptions are returned to
the client through Y. Otherwise Y tries to extract another
strand form n and iterates the process. Assuming that there
are N INRs in the overlay network, and that the level of key
replication is K, the query process involves K visited INRs and
O(logN) INRs for key routing [43].

Twine also provides a means for service selection. In this
case the INR network returns only one service that matches
the query and optimizes an application defined metric.

Service Handle Retrieval — The only access information
that Twine provides as a result of the discovery process is the
network address for the service. However, a service descrip-
tion, returned as a result of the client’s query, can store appli-
cation-specific data, in addition to the network address.

Twine is an attempt to improve on the design of INS by
extending it onto a self-organizing structured peer-to-peer
overlay network. By using Chord [43], it claims to enhances
the INS performance and scalability by reducing the need for
storage capacity, computation, and bandwidth, while reducing
the managerial tasks required for management of the overlay
network.

SPLENDOR

Splendor [48] has been designed in the Department of Com-
puter Science and Engineering at the Michigan State Univer-
sity, and was presented in 2003. Splendor is a service discovery
system that mainly considers security and privacy issues in the
service discovery process. Moreover it considers location
awareness, and service and client mobility; it mostly targets
clients and services connected to wireless mobile networks

like 2.5/3G and WLANs.
Splendor is a four-party service discovery mechanism, that

involves clients, services providers, directories and proxies. It
follows a centralized architecture, where the key element is
the proxy. In the service discovery process, a proxy works on
behalf of a mobile (i.e., nomadic) service, and performs regis-
tration, authentication and authorization for that service.

Bootstrapping — A predefined multicast address is used by
clients and services for bootstrapping. Directories use this
address to periodically multicast their unicast network
addresses.

Service Advertisement — As shown in Fig. 14, mobile ser-
vices do not register directly to the directory. Instead, upon
moving into a new network a service contacts its proxy over
the Internet and asks to perform registration on its behalf by
providing the announced directory address. Splendor uses a
tag-based location-awareness, where location-tags are assumed
to be emitted by some network components and read by the
services in order to track location changes. Messages contain-
ing tags may also optionally provide directory addresses and
certificates which may be used during the discovery process.

Querying — Clients send their queries to the nearby directo-
ry. The querying model and format are left open.

Service Handle Retrieval — Directories respond to client
queries with the address of the service proxy.

Splendor conceptually presents an interesting solution
especially for public spaces with widespread mobility of both
clients and service providers. It does not provide a full system
specification in terms of message format or communication
mechanism, however it focuses on the security issues. As
opposed to the other studied discovery approaches, Splendor
defines its own security protocols. It defines the protocols by

■ Figure 12. JXTA discovery process.

R3
R4
R7

Known
renezvous

peers

Rendezvous
peer 2 R4

R2
R3

R6
R8

R7

R3
R8

R6

R7
R9

R8

R6
R8

R5
R2
R5

2

2

R4

R2

Relay
peer

Relay
peer

NATFirewall Internet

Minimal
edge peer

R3

(1) P4 advertises itself to Rendezvous-peer8,
(2) P1 queries for P4, the query is propogated until P4,
(3) P4 advertises itself to P1

Full-featured
edge peer 1

Index
Module class/

spec./impl.

Index,
peer
ID

3

1 Advertisement

1 Query request

1 Query reply

Unicast (solid line)
Multicast (dotted line)

Remote peer advertisemets

P4

Local peer advertisements

which session-keys and certificates are exchanged between
entities to ensure mutual authentication, authorization, data
integrity and confidentiality. The security framework is further
presented next.

CONTENT SHARING PEER-TO-PEER APPROACHES

All content sharing P2P systems offer mechanisms for data
content lookup and for data transfer. Although data transfer
is usually conducted between two peers, the search mecha-
nism may involve intermediate entities. To facilitate effective
search, a file has a name, location, and sometimes description,
recorded as an entry in an index file. Search for a file typically
involves a query matching on the index file. P2P systems differ
in how this index file is distributed over the peers (architec-
ture) and what index scheme is used (index structure). From
an architectural point of view (Fig. 15), content sharing P2P
systems can be centralized, decentralized, or partially decentral-
ized. This division follows a logical evolution of the P2P sys-
tems. Centralized P2P systems are characterized by the
existence of a central index server, whose sole task is to main-
tain the index files and facilitate content search. Napster
belongs to this category. Centralized P2P systems are highly
effective for file search, but the index system itself constitutes
a bottleneck and a single point of failure. Decentralized archi-
tectures remedy this problem by having all peers index their
own local content, or additionally cache the content of their

direct neighbors. Content search in this case consists in flood-
ing the P2P network with query messages (e.g. through pure
broadcast in Gnutella [49]). A decentralized P2P system such
as Gnutella is highly robust, but the query overhead is over-
whelming in large-scale networks. Recognizing the benefit of
index servers, many popular P2P systems today use partially-
decentralized architectures, where a number of peers (called
super-peers) assume the role of index servers. In systems such
as KaZaA and Morpheus, each super-peer has a set of associ-
ated peers. Each super-peer is in charge of maintaining the
index file for its peers. Content search is then conducted at
the super-peer level, where super-peers may forward query
messages to each other using flooding. The assignment of
super-peers is difficult in such a scheme, as it assumes some
peers in the network have high capacity and are relatively
static (i.e., available most of the time). A newer version of
Gnutella also took this approach. We will focus on the origi-
nal Gnutella design in this section, as it is a representative of
the decentralized P2P schemes.

The indexing scheme used by content sharing P2P systems
can be categorized as unstructured, semi-structured, or struc-
tured. Unstructured P2P systems use flat index files, where
each index file has no relation to other index files. Napster,
Gnutella, and KaZaA/Morpheus belong to this category.
Semi-structured P2P systems, such as Freenet [50], use a local
routing table at each peer. A search is based on filenames that
are hashed to binary keys. The query is routed at each peer to

IEEE Communications Surveys & Tutorials • 4th Quarter 2007 17

■ Figure 13. INS/Twine architecture.

Service

Building

DC

Room

3335

<Building>DC
 <Room>3335</Room>
</Building>
<Service>Print
 <dpi>360x180</dpi>
 <Type>Color</Type>
</Service>

Root

ServiceBuilding

DC Print

TypedpiRoom

3335 360x180 Color

Query (NS)

2
1

1

NS*+NR**

2

1 Advertisement Local name records
2 Query request

3 Query reply

(*) Name specifier (NS)
(**) Name record (NR)

K7

K1

K5, K4

K1, K8, K6

K2, K3

3

3
INR

INR

INR

INR

NR
Client

Remote name records (replicas)

INR

INR

INR

Building

DC

Room

K2

Building

DC

K3

Service

Print

dpi

360x180K4

Service

Print

dpi

K5

Service

Print

Type

Color

Strands hashed into keys (K1)

K7

Service

Print

Type

K8

Service

Print

K6

IEEE Communications Surveys & Tutorials • 4th Quarter 200718

the closest matching key found on the local routing table. To
prevent infinite querying, a time-to-live value is used. Such
mechanism is effective assuming the file content is well repli-
cated over many peers. However, it is virtually impossible to
enforce data consistency for file updates. Structured P2P sys-
tems are specialized in efficient content search using fully dis-
tributed routing structure. Examples of this approach include
P2P systems that use distributed indexing and querying
schemes, such as Chord [43], CAN (Content Addressable Net-
work) [51] and Tapestry [52] (Appendix 1). The INS/Twine
overlay network formed by INRs is a typical example of struc-
tured P2P system. Since this approach has been previously
described, in this Section we will only consider unstructured
and partially-structured approaches.

Bootstrapping — When bootstrapping, Napster and KaZaA
assume that the index server is on well-known location (this is
a configuration parameter in the software). A single connect
message is sent by a peer to a index server on join. The peer
is fully connected to the P2P network afterwards. Freenet and
Gnutella use flooding based neighborhood discovery. Freenet
floods the network in search of a single peer node that is con-
nected to the network, while Gnutella floods the network in
search of all of its direct neighbors. After this process, the
peer is fully connected to the P2P network.

Service Advertisement — With the exception of Gnutella, a
data source (service provider) is responsible for registering its
data content with the directory. In Gnutella, as the directory
information is stored locally (where the data source is stored),

there is no registration process. The
directory information is stored centrally
in Napster, distributed among super-
peers in KaZaA, kept locally in Gnutella,
and distributed non-deterministically in
Freenet. The index distribution is non-
deterministic in Freenet as the data is
inserted n hops away from the insertion
request, based on routing hints given
along the path that leads to nodes with
similar hash keys (there may exist many
nodes with similar hash keys and the data
itself is replicated multiple times in the
network).

Querying — Napster sends query mes-
sages directly to the index server, where-
as Gnutella floods the P2P network with
query messages since each peer sends
queries to all of its immediate neighbors.
The scope of flooding is controlled by the

time-to-live value of the query message. The query will be
propagated onwards until a peer holding the requested data is
found or the TTL expires. A KaZaA peer sends the query
message directly to its super-peer, which then proceeds to
flood other super-peers with the query message. Freenet, uses
peer-routing for query lookup. A single query message is for-
warded from each peer based on its local routing table infor-
mation. When using indirect files in Freenet, more than one
message may be sent out from a peer (looking for multiple
files). All of these P2P systems perform text-based matching
on either filenames or keywords. Selection is handled very
primitively in Napster, Gnutella, Freenet, and KaZaA by
restricting the number of hits returned. The hits themselves
may be ranked by number of access, number of keyword
matches, etc.

Service Handle Retrieval — In response to the query, with
the exception of Freenet, requesting peers receive the contact
information (i.e., IP address) of the peer that holds the
requested data. Freenet will send the requested data as part
of the query result. This design is chosen for data source
anonymity (i.e., the data source is not known to requester)
and to utilize peer caches (i.e., any peer along the querying
path that contains the requested data may resolve the query
locally).

With the exception of Gnutella whose flooding mechanism
does not fit large-scale networks, the studied approaches gen-
erate very low overhead and are designed for the Internet
scale.

■ Figure 14. Splendor architecture and discovery mechanism.

(1) The service receives a beacon message with the lcoation of the directory, (2)
 sends an advertisement request to the proxy, (3) the proxy registers the
 service with the directory.

(I) The client receives the directory advertisement, (II) sends its query, (III) receives
 in response the address of the proxy, (IV) contacts the service via the proxy.

II
III

I

IV

Tag

Internet

3

Proxy

Subnet
(WLAN)

1

2Mobile
service

Mobile
client Directory

■ Figure 15. Content sharing P2P architectures.

Query

Query

Partially-centralized

File
download

Super-peer

Super-peer

Peer Peer
QueryReply

Central
server

Centralized

Peer
File
downloadPeer

Peer

Decentralized

Peer Peer

Peer

Peer

PeerPeer

Query

File
download

PeerPeer

Peer

IEEE Communications Surveys & Tutorials • 4th Quarter 2007 19

TECHNOLOGY COMPARISON

In this section, discovery approaches are evaluated and com-
pared with respect to the chosen criteria. A summary of the
comparison has been placed in Table 5, Table 6, and Table 7.

ARCHITECTURE

The architecture adopted by different service discovery
approaches can broadly be classified as centralized and decen-
tralized (Fig. 16) according to how the directory information
is stored. In the former category, a dedicated directory or reg-
istry maintains the whole directory information (as in Napster
and centralized UDDI), it takes care of registering services
and answering to queries. In the second category, the directo-
ry information is stored at multiple network locations. Decen-
tralized systems can be categorized as replicated, distributed, or
hybrid. In the replicated case, the entire information is stored
at different dedicated directories (as in INS). In the distribut-
ed case, the directory information is partitioned. Directory
information is stored at different network locations; it is
either stored in dedicated servers, i.e. directory agents (DA)
(as in SLP, Jini and SDS where a hierarchical architecture is
used) as per a three-party model or cached locally by the ser-
vice providers in the system (e.g., UPnP, JXTA, and central-
ized P2P systems) according to a two-party model. Finally, in
the hybrid case, both replication and distribution are used (as
in INS/Twine).

In large-scale networks, a centralized directory becomes a
performance bottleneck and a single point of failure that may
lead to the crash of the whole system if no recovery mecha-
nism is deployed. Consistency of the replicas is a major issue
in the replicated architecture (like INS), since maintaining
consistent replicas is usually bandwidth-consuming. On the
other hand, when the directory information is distributed, i.e.
partitioned, among dedicated directories, the failure of one of
them leads to the unavailability of a part of the directory
information. The fully distributed two-party architecture
attempts to remedy all these issues, however these systems
generally does not scale well, since they use multicast-like
communications which are expensive in terms of bandwidth.

Decentralized hybrid architectures seem to offer
the best compromise between bandwidth con-
sumption, hence scalability, and fault-tolerance.
INS/Twine falls into this category.

INS/Twine presents the optimal architecture
that conciliates fault-tolerance (using INR replicas
for tolerance to INR failure) and scalability (direc-
tory information is distributed in a Chord ring).

EFFECTIVENESS

In SLP, Jini, UPnP and Salutation, the correctness
of the response to a query is ensured by the use of
an exact pattern matching during service filtering
and selection, assuming the directory information
is valid. Splendor, Web Services and Grid Services
use a similar approach for ensuring correctness.

SLP and UPnP uses administratively-scoped
multicasting [53], which inhibits multicast packets
from crossing the configured administrative
boundary. This ensures completeness of the dis-
covery process within an enterprise network, as
targeted by these approaches. However, for Jini
time-to-live scoping may impede completeness; for
complete discovery, it must have a TTL large
enough to cover the whole discovery network. In

Salutation, the completeness of the response is ensured via
the capability exchange mechanism used between Salutation
Managers.

SDS uses Bloom filters for representing service descrip-
tions. Possibility of false positives is inherent in Bloom filters,
making it possible for a client discover non-matching service
descriptions as a result of a query, if the size and load of the
Bloom filters are not chosen appropriately. However, it is
ensured in SDS that all the advertisements matching a query
can be discovered, despite the possibility of having some
redundant results.

In Splendor, Web Services and Grid Services, the com-
pleteness of the query response is assured by, however restrict-
ed to, the centralized registry; query responses will not
contain those service descriptions stored within registries that
are not reached by the query.

In case of INS and INS/Twine, directory information repli-
cated in different INRs remains consistent with infrequent
updates (join and leave of INRs; state change of services).
Responses to queries are expected to be complete in such
environment. On the other hand, correctness of the discovery
process depends on the placement of attributes in the query
(name-specifier tree). A client requires prior knowledge of the
advertised attributes and their levels in the name-specifier
tree.

For content-sharing P2P systems, Gnutella and Freenet
cannot guarantee correctness of the query response. Effective-
ness in JXTA mainly depends on the querying method used.

Solutions related to exact pattern matching (such as in
SLP, Jini, etc.) offer guarantees on the correctness of the
query response. Systems with dedicated and conceptually cen-
tralized repositories, such as UDDI, guarantee query com-
pleteness within the scope of the queried repository.
Structured P2P systems like DHTs, guarantee query com-
pleteness within the scope of the distributed directory system.
A system like INS/Twine with an enhanced querying model
(such as pattern matching) for correctness guarantees would
meet the effectiveness requirements.

■ Figure 16. Service discovery system architectures.

Centralized
(UDDI, Napster)

Directory architecture

Decentralized

Replicated
(INS)

Distributed Hybrid
(INS/Twine)

y x

x y

Directory agent
(SLP, Jini,

SDS, Splendor)

Legend

Remote registry (partial) Registry (entire) Directory agent

Local registry (partial)

Local cache
(Upnp, JXTA, Pure/partial

decentralized P2P)

Service provider

IEEE Communications Surveys & Tutorials • 4th Quarter 200720

FAULT TOLERANCE

Centralized architectures (like UDDI registry and Splendor)
suffer from a potential single point of failure. Using multiple
directory agents in SLP and multiple lookup services in Jini
improves the resilience of the system by removing the single
point of failure. Jini employs peer-lookup for discovery in case
of lookup service failure, while SLP user agents reattempt to
discover a new Directory Agent, and if no Directory Agent
can be reached, multicast requests are sent to Service Agents.

Content-sharing P2P systems vary significantly in the ability
to handle faults. Napster has a single point of failure on its
index server, but no recovery method is used. The failure of
super-peers in KaZaA results in a network partition. Gnutella
does not use any dedicated registry, resulting in better robust-
ness.

In INS, the failure of an INR node can lead to tree parti-
tioning. The replication of the whole directory information in

all INRs allows the discovery system to recover this failure,
however this leads to the failure of update propagation. In
INS/Twine, the recovery from INR failure is handled by
Chord.

To handle failure of SDS servers, SDS adopts multicasting.
SDS servers listen on a well-known multicast channel for peri-
odic service advertisements and announcements from other
SDS servers. The absence of announcement from a SDS serv-
er indicates its failure. In that case, another SDS server in
proximity takes over the place (domain) of the failed server
and announces itself as responsible for that domain.

In addition to node failures, communication failures may
also impede the functioning of the service discovery system
since they introduce inconsistency in the system. Some studies
[54, 55] have tested and measured the performance of the
self-healing techniques of discovery approaches (for instance
Jini and UPnP) in response to message loss and interface fail-
ures respectively. The Jini and UPnP specifications distinguish

■ Table 5. Comparison of discovery systems (1).

Criteria Salutation SDS SLP Jini

Architecture Decentralized
two/three-party

Decentralized
three-party

Decentralized
two/three-party

Decentralized two/three-
party

Effectiveness

Correctness Guaranteed (exact
pattern-matching)

Possible
false-positive

Guaranteed (exact
pattern-matching)

Guaranteed (exact
pattern-matching)

Completeness Guaranteed Guaranteed Guaranteed in
administrative scope Limited by TTL

Fault Toler-
ance

Point of failure Dedicated SM in
3-party setting

SDS server near
root level DA in 3-party setting LUS in 3-party setting

Recovery
Methods

Periodic availability
check for srv

Periodic multicast
announcements

Turn to 2-party, soft-
state srv advertisement

Turn to 2-party soft-state
srv advertisement

Performance

Communication
Overhead Moderate Moderate Moderate Moderate

Load Balancing Not considered Child servers
spawned Not considered Not considered

Security

Integrity Not considered Not considered Digital signatures Digital signatures

Privacy Not considered Hybrid encryption Recommended IP/ESP Encryption

Authentication Primitive login/pwd Certificates Assumed within the
domain Certificates, TLS

Authorization Not considered Client capability list Not considered Client permission
policies

Platform
Network
Independence

Platform
dependence Independent Independent Independent Java platform

Network
dependence Independent IP IP IP

Scalability LAN scale WAN scale LAN scale LAN scale

Interoperability with Other
Discovery Services Possible, e.g., SLP Not considered Possible, e.g., Jini,

Salutation
Possible, e.g., UPnP,
INS/Twine

Standardization and Existing
Implementations

de facto standard,
implementation
exists

Research work Standard,
implementation exists

de facto standard,
implementation exists

IEEE Communications Surveys & Tutorials • 4th Quarter 2007 21

two techniques for consistency maintenance: notification and
polling. In polling, a user agent periodically sends queries to
obtain information about a service that was previously discov-
ered, in order to update the service description that was previ-
ously retrieved and cached locally. In notification, the user
agent subscribes to receive events announcing that a change
has a occurred in the description of a specific service. The
studies show that a two-party architecture with the polling
technique (like UPnP) is the most effective, i.e. offers the
highest probability that a user agent will receive a change
when it occurs at the desired service, however a three-party
architecture (with a single repository) with notification (like
Jini with a single LUS) is slightly more efficient than a two-
party architecture with the polling technique, i.e. propagates
fewer messages on the system to indicate changes in the ser-
vice.

When a failure is detected while attempting to contact a
node (either due to communication failure or node failure),
two techniques may be used (separately or in combination) by

discovery systems to recover [56]. In the first technique, called
application-persistence, a number of attempts may be issued to
re-contact the node. On failure, the information about that
node will be discarded from the cache. In the second tech-
nique, the information about the node is stored in the cache
with a life-time as per a soft-state discovery model (like in
Salutation, SDS, SLP, Jini, UPnP, INS/Twine); the informa-
tion is discarded from the cache once the life-time expires
without receiving a re-announcement from the node. When
these techniques are combines, attempts to reach a node will
stop as soon as the number of maximum attempts is reached
or the life-time of the node information expires. This solution
generally leads to optimal results. It is used by UPnP, SLP
and Jini for contacting the SA, DA and LUS respectively.

UDDI addresses call failures by establishing a calling con-
vention (retry on failure) that relies on the use of cached ser-
vice bindingTemplate information, refreshed from the UDDI
registry whenever a call failure occurs. The bindingTemplate,
first obtained from the UDDI registry, is cached and then

■ Table 6. Comparison of discovery systems (2).

Criteria INS UPnP Splendor Grid Services

Architecture Decentralized
replicated

Decentralized Decentralized three-
party Centralized

Effectiveness Correctness Depends on the posi-
tion of av-pair

Guaranteed (exact
pattern-matching)

Implementation-
dependent Guaranteed

Completeness Guaranteed Guaranteed in adminis-
trative scope

Implementation-
dependent Guaranteed

Fault
Tolerance

Point of failure INR SAs Directory Directory

Recovery Replication, Soft-state
advertisement

Soft-state srv
advertisement

Soft-state srv
advertisement

Soft-state srv adver-
tisement

Performance

Communication
Overhead High High Low Low

Load Balancing Child node spawned Inherent to the
architecture Not considered Among service

instances

Security

Integrity Not considered Not considered Digital signatures Digital
signatures

Privacy Not considered Not considered Encryption Encryption

Authentication Not considered Not considered Certificates Certificates

Authorization Not considered Not considered Credentials Credentials

Platform
Network
Independence

Platform
dependence Independent Independent Independent Independent

Network
dependence IP IP IP Independent

Scalability WAN scale LAN scale WAN scale Internet scale

Interoperability with Other
Discovery Services Not considered Possible, e.g., Jini Not considered Possible

Standardization and Existing
Implementations

Research work,
implementation exists

de facto standard
implementation exists

Research work,
implementation exists

de facto standard,
implementation exists

IEEE Communications Surveys & Tutorials • 4th Quarter 200722

used to call the associate remote Web Service. When a failure
is detected, a newer version of the bindingTemplate is
obtained from the UDDI registry, the service is called again,
and if the call succeeds, the cached bindingTemplate is
replaced with the new one.

In terms of robustness, distributed two-party architectures
with polling technique (like UPnP) seem to offer a good solu-
tion for the tolerance to node failure and the maintenance of
system consistency. Jini, SLP, INS and INS/Twine can also
handle node failure reasonably well thanks to their recovery
techniques based on the soft-state discovery model.

PERFORMANCE

It is very difficult to evaluate the performance of the studied
systems especially that there are no comprehensive bench-
marks or evaluation measurements of service discovery
approaches; existing works (like [9]) do not cover all the sys-
tems, and it is especially difficult to attempt to evaluate them
in a large-area setting. We will therefore focus on two broad

criteria: communication overhead and load balancing, and try
to qualitatively compare the performance of different
approaches.

Communication Overhead — The communication overhead
often depends on design choices and considerations. Follow-
ing are the major conceptual choices that influence the net-
work load.
• Soft-state vs. hard-state advertisements: Approaches

where a service advertises itself as per a soft-state model,
like SDS, SLP, Jini, UPnP, INS, INS/Twine, OGSA and
JXTA, require announcement or registration renewal
before the lifetime of the service expires. This certainly
generates more communication overhead than the hard-
state model. However, first, this overhead is not signifi-
cant if services have reasonably long lifetimes (in range
of hours and days), and second, soft-state advertisements
prevent managing and maintaining the consistency of
caches when a service fails before proceeding to an
explicit deregistration.

■ Table 7. Comparison of discovery systems (3).

Criteria INS/Twine JXTA Web Services (UDDI) Partially-centralized
and Structured P2P

Architecture Decentralized hybrid Decentralized two-
party Varies, see Table 2 Decentralized three-

party

Effectiveness

Correctness Depends on the posi-
tion of av-pair Guaranteed Implementation-

dependent Guaranteed

Completeness Guaranteed Implementation-
dependent

Restricted to queried
directory Guaranteed

Fault
Tolerance

Point of failure INR Peers Directory Index nodes

Recovery
Method Chord Periodic updates Retry on failure,

cache update Periodic updates

Performance

Communication
Overhead Moderate Moderate Low Moderate

Load Balancing Inherent to Chord Not considered Not considered Among super-nodes

Security

Integrity Not considered Digital signatures Digital signatures Not considered

Privacy Not considered Encryption Encryption Not considered

Authentication Not considered Certificates, TLS Certificates, Kerberos
tickets Not considered

Authorization Not considered Credentials In progress Not considered

Platform
Network
Independence

Platform
dependence Independent Independent Independent Independent

Network
dependence IP Independent Independent IP

Scalability WAN scale Internet scale Internet scale Internet scale

Interoperability with Other
Discovery Services Possible, e.g., Jini Possible Possible; protocol

stack Possible

Standardization and Existing
Implementations

Research work,
implementation exists

Standard,
implementation exists

de facto standard
implementation exists

Research works,
implementation exists

IEEE Communications Surveys & Tutorials • 4th Quarter 2007 23

• Multicast vs. unicast: Multicast and flooding systemati-
cally generate communication overhead; entities are like-
ly to receive multicast/broadcast messages even when
they are not interested in. UPnP uses multicast for both
queries and announcements, and Gnutella uses flooding;
both are bandwidth-consuming. In SLP, Jini and Saluta-
tion, bootstrapping may imply multicasted or broadcasted
messages, respectively, for user and service agents to find
a directory agent, for clients and service providers to dis-
cover a lookup service and finally for Salutation man-
agers to discover each other. In SLP and Jini, the
overhead increases when no directory can be reached.
Nevertheless, it is worth noting that SLP, Jini, and UPnP
specifications recommend the use of low time-to-live
(TTL) values for multicasted messages, e.g. UPnP rec-
ommends 4 as opposed to 15 -default TTL value for Jini-
or 255 -default value for SLP-. This basically restrict the
multicast scope and hence lightens the network load.
However, that may partition the network: when a query
is multicasted with a low TTL, it may not reach all ser-
vice providers and hence the query result may be incom-
plete. SDS also uses multicasting for service
advertisements and announcements from SDS servers
(usually in LAN environment). However, client-SDS
server and inter-SDS server communication is over uni-
cast channels. The overall communication overhead in
SDS is controlled by restricting the multicast communica-
tion in local domains of SDS servers (usually LAN) and
utilizing unicast communication for wide area connectivi-
ty between SDS servers.

• Centralized vs. decentralized architecture: In general, a
service discovery approach using a centralized architec-
ture has less messaging overhead than a service discovery
approach using a decentralized architecture. A caching
mechanism may be used by decentralized systems, like
UPnP and Salutation, to lighten the network load. How-
ever, when services are advertised with a hard state, like
in Salutation, the cache is not ensured to be consistent.
In INS and SDS, the use of replication also prevents
queries from being automatically spread into the whole
network. However, the replication mechanism implies
the propagation of new information and advertisement
updates through the whole or part of the network, which
is bandwidth-consuming as well. As opposed to INS
where directory information is replicated in all INRs, the
number of replicas for an INR in INS/Twine is a fixed
system parameter which restricts the communication
overhead due to the maintenance of replicas. On the
other hand, due to the use of Chord, the maintenance of
the ring topology of INRs in INS/Twine involves addi-
tional message exchanges however allows to upperbound
the number of participating nodes in query and adver-
tisement routing. The use super-peers in KaZaA and
Rendezvous peers in JXTA is a good compromise in
terms of bandwidth consumption.
In terms of communication overhead, UDDI appears an

optimized approach since, first it uses a centralized architec-
ture, it uses only unicast communications (even the directory
is not assumed to be discovered at bootstrapping; its location
is assumed to be well-known), and finally services are regis-
tered with hard state. For system consistency maintenance, as
discussed previously, it is preferable for a discovery system to
implement the soft-state model. In addition, for the sake of
scalability and robustness, the centralized architecture is not
advised. INS/Twine presents an interesting compromise as
besides its architecture and robustness, it allows to upper-
bound the communication overhead.

Load Balancing — Centralized approaches often suffer from
overload problems as the number of services registered with
the registry and the number of consumer queries increase.
Load balancing in that case can be handled through replica-
tion; i.e. through introducing a multi-node registry. UDDI,
SLP and Jini allow the deployment of this kind of mechanism.
In SLP and Jini more than one directory agent, or lookup ser-
vice, can be deployed within a scope, or djinn, respectively.
However, none of the three systems have yet considered how
to balance registry load.

In INS, when a resolver is overloaded, it may automatically
spawn an instance on an other candidate resolver (currently
inactive), and then terminate itself if it is not loaded anymore.
Information about the candidate-node is retrieved from the
DSR, and once the INR load falls below a threshold, it
informs its peers and the DSR before terminating itself.

To reduce/distribute load at the root node of SDS server
tree, queries are propagated horizontally among siblings,
when it reaches near the root SDS server.

In general, discovery systems are either inherently loadbal-
anced (like Freenet) or do not well address this issue. INS is
in reality the only system that addresses load-balancing.
Thanks to their inherent load-balancing feature due to the use
of consistent hash functions for data indexing, DHTs are very
attractive for the design of a distributed directory system.

SCALABILITY

Salutation, SLP, Jini and UPnP are designed for relatively
small networks, typically local area networks, where a directo-
ry may not be required. For larger deployment, the use of
directories and low TTL values for multicast communication
is recommended by SLP and Jini. However, even with low
TTL, UPnP still does not fit large networks because of the
overhead generated by the multicast communications. On the
other hand, Salutation’s scalability is tightly dependent on the
way Salutation managers know about each others and
exchange capabilities. The classical way these tasks are
achieved, i.e. through broadcast or RPC broadcast [17], can-
not be performed in large networks. For a better scalability,
the Salutation Consortium is pushing towards the expansion
of the Salutation architecture to support directory-based ser-
vice discovery. A framework for interworking Salutation with
SLP is currently being finalized.

INS presents the disadvantage of being computation-inten-
sive and bandwidth-consuming when the number of handled
services is large. This is respectively due to the resolution and
the propagation processes. With the use of the Chord index-
ing scheme, INS/Twine presents better performance in large-
scale networks. INS/Twine is assumed to scale well into
networks involving up to O(108) services and O(105) resolvers
[29].

Although UDDI and Splendor are designed for wide-area
networks, their centralized architecture is not suitable for the
Internet-scale. Similarly, although SDS aims to support a
large user base, the architecture relies on a few central com-
ponents (i.e. Certificate Authority and Capability manager)
which reduces its suitability as a secure wide-area discovery
system.

Peer-to-peer approaches, like JXTA and content sharing
systems, are designed to fit large-scale Internet-like networks,
with the exception of Gnutella because of its flooding mecha-
nism. Generally, peer-to-peer approaches offer good solutions
for scalability and self-organization.

SECURITY

IEEE Communications Surveys & Tutorials • 4th Quarter 200724

The security issue is not considered in most of the service dis-
covery systems, for example in Salutation (where simple
login/password scheme is provided between clients and func-
tional units which is basically not part of the discovery pro-
cess), UPnP, INS, INS/Twine and most of the content sharing
peer-to-peer approaches. It is weakly addressed in KaZaA
where a simple login/password authenticate the users, and in
Freenet which conceptually provides user’s anonymity. Security
is considered in more depth in SDS, SLP, Jini, Web Service,
OGSA, JXTA and Splendor. Authentication, authorization,
data integrity and privacy are the major security issues that are
completely or partially considered by these systems.

SLP considers message integrity by providing Authentica-
tion Blocks (i.e. digital signatures) over service URLs and ser-
vice attributes in the advertisement messages. This allows user
and directory agents to check the integrity of advertised ser-
vice URLs and attributes. Entities that generate authentica-
tion blocks are those which have been configured in advance
by administrators. User agents verify signed data coming from
directories and service agents and assume that they are “trust-
worthy.” This “trustworthiness” relies on the administrators to
ensure the secrecy of cryptographic keying for service and
directory agents. SLP does not provide confidentiality but rec-
ommends the implementation of IP Encapsulating Security
Payload (ESP) [57] when it is needed to provide confidentiali-
ty for exchanged messages. SDS considers authentication,
authorization and message confidentiality for multicast com-
munication. It offers authentication for client-SDS server, ser-
vice-SDS server, and inter- SDS server communications. It
can control the visibility of service descriptions to only the
authorized set of users. For multicast communications, mes-
sage confidentiality is ensured by adopting a hybrid encryption
technique, for performance reason. Each multicast message is
encrypted using a symmetric key and the key is embedded in

the message header. The message header is then encrypted
using the public key of the receiving entity.

Jini, OGSA (and more exactly the Grid Security Infra-
structure (GSI)), JXTA and Splendor use similar approaches
to cover the security issue. They use mutual authentication
between the different involved entities in the discovery sys-
tem; GSI and Splendor use X.509-based certificates [58], Jini
allows the use of Transport Layer Security (TLS) [59] and
other mechanisms, and JXTA protocols are designed to be
compatible with TLS, in addition, certificates can easily be
added to JXTA messages. Moreover Jini, GSI, JXTA and
Splendor use credentials to ensure authorization, public-key
cryptography (a Public Key Infrastructure (PKI) [58] for
instance) for confidentiality and digital signatures to ensure
data integrity.

The Organization for the Advancement of Structured
Information Standards (OASIS) consortium has elaborated
and promoted the “Web Services Security” (WSS) as a stan-
dard Web Service security model [60–62]. The WSS frame-
work relies on existing security technologies like the XML
Digital Signature, XML Encryption and X.509 certificates for
ensuring message confidentiality and integrity. It defines a set
of SOAP extensions (for data integrity and confidentiality),
describes the way Kerberos-like tickets can be used for user
authentication and the way X.509 certificates can be used in
combination with SOAP extensions for message authentica-
tion.

As in distributed systems, establishing end-to-end security
guarantees in service discovery systems is very challenging in
large-scale settings; the number of malicious users and service
providers is more likely to increase with the size of the net-
work, and it becomes harder to ensure that a message that tra-
verses multiple domains is “safe” in all parts of its route. In
large-scale and multi-domain settings, a discovery system
should protect itself from malicious users and service providers
by establishing an authentication mechanism between all
involved entities. In addition, in order to ensure message secu-
rity, it is important to prevent data from being altered and sen-
sitive information from being captured by malicious third
parties. In fact, 1- a malicious intruder can capture a response
to a query, replace the access information of a “safe” service
provider by the access point of malicious one, and without
message integrity check, the user will not be able to detect the
attack, 2- a malicious intruder can use a captured access infor-
mation to attack the associate service provider (Denial of Ser-
vice attack). Note that authorization is an extra security level,
mostly required to rule the way users access “personalized”
service depending on the granted access rights. In a small-net-
work and a single administrative domain an SLP-like security
mechanism can be sufficient. However, this mechanism that
assumes the trustworthiness of users and service providers
within the domain boundaries, becomes obsolete in large-scale
and multi-domain setting. For the sake of interoperability, it is
preferable to use standard security mechanisms and well
known techniques like X.509 certificates for mutual authenti-

■ Figure 17. Directory information: content and data formats.

Globally unique ID
Service identity

Locally unique ID + IP:Port
URI/URL

Salutation, Jini, UPnP, JXTA
INS, Twine
SLP, Web/grid services

Attribute-value pairs
Service description

List Salutation, SLP, Jini, UPnP etc.
Hierarchy INS, Twine

Allowed attributes
Standard Salutation, SLP, Web services, UPnP
Application-defined Jini, JXTA, INS, Twine, SDS etc.

Representation
XML-based UPnP, Web services, Twine
Proprietary Salutation, SLP, Jini, INS

Selection metric
Protocol-specific information

Routing info.
Notification info.

INS, Twine
INS, Twine, JXTA
Jini, UPnP

Soft state
State of a directory entry (expiry-time)

Hard state
Hybrid

INS, Jini, SLP, Grid service
Salutation, Web services
Twine, Splendor

Service identifier
Access information, i.e. service handle

Network addr.

Description (XML)
Proxy stub

UPnP, JXTA, web-service, SDS
Jini

URL

Salutation
INS, Twine, Splendor
SLP, UPnP, JXTA, web-service

■ Figure 18. Existing approaches for interworking service discov-
ery technologies: (1) Jini-UPnP, (2) Jini-SLP, (3) Jini-Twine,
(4) Salutation-SLP.

21

3

4

Jini

UPnP SLP Salutation

Twine

IEEE Communications Surveys & Tutorials • 4th Quarter 2007 25

cation between involved entities, public-key cryptography for
message confidentiality and digital signatures for data integrity.
In addition, in large-scale and multi-domain settings, it is
important to rely on public security authorities (like VeriSign),
which are not used by Splendor or SDS. Jini, JXTA, GSI and
Web Services provide a good level of security and use standard
security mechanisms and architectures compliant with a large-
scale setting. Within these frameworks, implementing WSS
and SOAP extensions would be required for securing the envi-
sioned inter-domain web-based discovery mechanism.

PLATFORM AND NETWORK INDEPENDENCE

With the exception of Jini which requires a Java-based imple-
mentation and, hence, commonly relies on a Java Virtual
Machine (JVM), all of the examined approaches are program-
ming-language independent.

SLP, UPnP, INS, INS/Twine, Splendor and most of the
content sharing peer-to-peer systems are designed for IP net-
works. UPnP also assume the support of IP multicast. Since
the protocol details of SDS are not publicly available, its only
nod towards system-independence is its use of XML for
describing service advertisements. Web and Grid services use
standard protocol stack, which makes them independent of
operating system platform and development language. Since
UDDI relies on HTTP, it has the added advantage of not
requiring reconfiguration from most firewalls. Together with
Salutation and JXTA, Web and Grid services explicitly tackle
platform-independence, and hence offer the best solution in
terms of network and transport layer abstraction.

INTEROPERABILITY WITH OTHER DISCOVERY SERVICES

Most of the service discovery approaches mentioned in this
survey are not interoperable with each other. The use of spe-
cific communication protocols, data and data formats (Fig. 17)
prevent such interoperation.

Jini, for example, is difficult to interoperate with other
approaches due to Jini’s exclusive use of Sun technologies (e.g
RMI and Java Classes) for communication and description.
Similarly, the naming scheme adopted in INS (and INS/Twine)
is not standard, and it is difficult to incorporate such a naming
scheme in other service discovery approaches, like SLP or
Jini. In Splendor, the use of specific protocols for authentica-
tion and message encryption prevents from interworking with
other service discovery approaches. The absence of details on
the SDS protocol makes it hard to evaluate its interoperability
with other discovery systems.

None of the analyzed P2P systems interoperate with each
other. This is mainly due to their lack of standard directory
information representation and communication protocol. If
these architectures are implemented using a standard devel-
opment suite such as JXTA, and provided with a standard
definition of directory information, then interworking among
P2P systems is possible. However, the unique indexing and
routing schemes used by some P2P systems makes their inter-
working with other discovery approaches difficult.

On the other hand, UPnP is designed to be open by using
well-known and standardized technologies. It is then feasible
for other discovery mechanisms to interwork with UPnP. Sim-
ilarly, since SLP is standardized, simple, and uses well-known
features like LDAP filters, DHCP and IANA assigned names,
other approaches could be enhanced to interwork with SLP.
For example, Salutation Consortium is working on a frame-
work to make Salutation interoperate with the SLP system to
resolve scalability issues [63].

Web Services are meant for interoperability in the Inter-

net. With the help of XML, SOAP, and WSDL, Web Services
are expected to be interoperable with other service discovery
mechanisms. Of course, well-defined and well-accepted XML
schemas have to be defined. OGSA does not address the
inter- Grid interaction in detail. Also, although Grid Services
are generally considered as stateful Web Services, Grid Ser-
vices cannot interact very well with Web Services. Recently,
there has been some work to merge Web Services with Grid
Services. Example proposals include the Web Service
Resource Framework (WSRF) [64], which focuses on building
stateful Web Services.

As shown in Fig. 18, a number of works bridging Jini- UPnP
[65], Jini-SLP [66], Jini-Twine [67] and Salutation- SLP [63])
have been conducted to enable interoperation between two dif-
ferent service discovery technologies. Each of these work
employs a kind of “bridge” for protocol and data conversion.

Koponen et al. [66] have presented an architecture for Jini
and SLP interoperability. At the core of this architecture are a
service broker and an adapter. The adapter has two-fold func-
tionality: it acts as directory service (i.e. directory agent for
SLP and lookup service for Jini) and it registers services in
other domains with the local directory service. An adapter
captures local advertisements and forwards them to the bro-
ker. The broker in turn registers these advertisements with the
directory service of each domain using the adapter in the
respective domain. A client can discover services in remote
domains, simply by querying its local directory service. This
approach is not suitable for networks with a large number of
domains, due to two reasons. First, all advertisements are mir-
rored in the directory service of each domain, which raises a
scalability issue. Second, the broker is a single point of failure
and a performance bottleneck.

Another work [65] presents an architecture for interwork-
ing Jini and UPnP, where virtual clients and services are
placed in each domain. For a service that is discovered by a
virtual client in one domain, a corresponding virtual service is
created in the other domain. The virtual service registers itself
to Jini Lookup Service (in Jini domain) or multicasts its exis-
tence (in UPnP domain). A client can discover and access a
service in a remote domain using the virtual service present in
its own domain. This approach is not efficient for connecting
a large number of domains since all the services of all domains
are mirrored in each domain.

A different approach [67] for interworking Jini and Twine
adds a proxy component between both domains. The proxy
acts as a lookup service in the Jini domain and both as a
client and service in the Twine domain. It forwards both
advertisements and queries coming form the Jini domain to
the Twine domain. Hence, Jini services are registered in the
Twine domain, and while queries coming from Jini clients are
solved both in the Jini and Twine domains, queries coming
from Twine clients are resolved only in the Twine domain.
Applying such an approach to different discovery systems, for
instance UPnP instead of Twine, would assume that both
domains are part of the same network, for instance local area
network. Such an assumption is not suitable for service discov-
ery in wide-area networks.

Despite attempts at interoperating several of the service
discovery systems, among all the approaches, Web Services
may be the easiest one to extend in order to address the inter-
operability issue, as it uses standardized Web technologies
(e.g. XML, SOAP, and WSDL).

STANDARDIZATION AND EXISTING IMPLEMENTATION

Several international organizations have been involved in
standardizing or promoting service discovery approaches.

IEEE Communications Surveys & Tutorials • 4th Quarter 200726

Specifically, they are the IETF for SLP, Globus Alliance for
OGSA Grid Services, the W3C and UDDI Consortium — a
section of the Organization for the Advancement of Structured
Information Standards (OASIS) — for Web
Services/XML/SOAP/WSDL/UDDI, Salutation Consortium for
Salutation, and UPnP Forum for UPnP. On the contrary, SDS,
INS and INS/Twine remained in the stage of research works.

There are a number of existing implementations and devel-
opment platforms for Salutation, SLP, Jini, INS and
INS/Twine, UPnP and JXTA.
• IBM provides a Salutation Software Development Kit

(SDK) and Salutation-Lite is provided in Open Source at
the Salutation Consortium web site [18].

• The OpenSLP project [68] delivers an open-source imple-
mentation of SLP.

• Sun Microsystems has released the Jini Technology
Starter Kit [69] to build Jini-enabled clients, services, and
lookup services.

• The current implementation of INS and INS/Twine uses
Java 2.0 platform and is available at [70].

• A number of UPnP SDKs are available, including the
ones developed by Intel [71] and the open source SDK
for the Linux platform [72].

• An implementation of the JXTA Proto-
cols using Java 2 Standard Edition (J2SE)
[73], and another one in C for Windows
and Linux platforms [74] are available.
WebSphere [75], .NET [76], and SUN ONE

web services [77] are the main existing imple-
mentations of Web Services. Only Globus pro-
vides a development toolkit (Globus Toolkit
[78]) to implement Grid Services. The most
important standardizations efforts and active
standardization bodies target Web-based tech-
nologies (like Web services). For the sake of
interoperability and standardization, web tech-
nologies are definitively the best choice.

TECHNOLOGY SELECTION

As highlighted in the Introduction, the goal driv-
ing this work is to survey existing service discov-

ery approaches to see which ones emerge as possible
candidates for a large-scale, multi-domain service-discovery
infrastructure. In examining the characteristics of surveyed
approaches, we have determined that to meet our goals, a ser-
vice-discovery system should have the following characteris-
tics:
• A hybrid decentralized architecture (such as the one in

INS/Twine) where index nodes are provided by partici-
pating domains. This type of peer-to-peer architecture
would allow different administrative domains to partici-
pate equally in the infrastructure, without requiring a
central controlling entity. On the other hand, the struc-
tured components provide a backbone to the architec-
ture, reducing maintenance and network overhead.

• Guaranteed search completeness and good correctness
measures (narrowing down of results to the relevant
ones). The effort in building a large-scale search archi-
tecture is wasted if it does not have the ability to discover
relevant services across large network distances and
domain boundaries.

• No single point of failure, and fault-tolerance in case of
node failure in the distributed architecture. As a specific
precaution, because of the multi-domain aspect of the

■ Figure 19. Example of CAN lookup in 2 dimensions.

Routing of query from Peer S to Peer D

Peer

Resource

Query/
resource

Request for routing
a key that maps to
point (x,y)

Q(x,y)

Q(x,y)

Zone
S

Peer responsible for documents in its zone

y

x,yD

■ Figure 20. Tapestry: message route path from 42769 to 31246.

02769

12769

22769

32769

42769

52769

62769

72769

82769

92769

X0769

X1769

X2769

X3769

X4769

X5769

X6769

X7769

X8769

X9769

XX069

XX169

XX269

XX369

XX469

XX569

XX669

XX769

XX869

XX969

XXX09

XXX19

XXX29

XXX39

XXX49

XXX59

XXX69

XXX79

XXX89

XXX99

XXXX0

XXXX1

XXXX2

XXXX3

XXXX4

XXXX5

XXXX6

XXXX7

XXXX8

XXXX9

42769

xxxx6
xxx46

xx246

x92466

31246

80216

Root

...

...

...

73146

31246

Object request

49246

31246

89246

...

IEEE Communications Surveys & Tutorials • 4th Quarter 2007 27

system, the functioning of components in one domain
cannot be jeopardized by the failure of those in other
domains.

• Soft-state advertisement, unicast or restricted-multicast
communication. The latter characteristic reduces band-
width consumption, while the former simplifies system
maintenance and improves fault-tolerance.

• A scalable, self-organizing architecture with minimal
maintenance communication. As with all Internet-scale
systems, a service-discovery architecture must be
designed for unpredictable growth.

• Compatibility with existing security protocols. A multido-
main environment benefits from simple, well-known
security mechanisms.

• Platform and network-independence. This aspect allows
service providers with heterogeneous platforms to partic-
ipate in the architecture.

• Potential for extensibility and interoperability with other
service-oriented systems. As with the scalability, the sys-
tem must be flexible enough to grow and incorporate
new or existing technologies.

• The use of well-accepted, standardized tools, such as
Web-based technologies. In an environment where many
different participants must agree on a common set of
technologies, it is important for those technologies to be
standardized and well-understood in the Internet com-
munity.
We have summarized the comparison of service-discovery

approaches in Table 5, Table 6, and Table 7 as well as in an
at-a-glance summary in Table 1, From the discussion earlier
we see that none of the examined approaches achieve all the
above objectives. However, it is worthwhile to examine those
systems which fared well in at least some of the areas. Their
desirable characteristics can then be exploited in building a
unifying multi-domain, Internet-scale service-discovery system.

In selecting the components for a new service-discovery sys-
tem, we first discuss the basis for the distributed peerto- peer
architecture. Of the studied peer-to-peer systems, the distribut-
ed hash-table approaches (e.g. Chord) provide a desirable dis-
tributed architecture: they exhibit enough structure for low
bandwidth consumption and scalability, while obviating the
need for centralized components. Moreover, the deterministic
query-routing algorithms of DHTs ensure query completeness
and guaranteed performance (i.e. bounds on query complexi-
ty). A structured peer-to-peer system used for building a ser-

vice-discovery architecture would benefit from being coupled
with JXTA, which provides a platform-independent develop-
ment framework, and adds standard security mechanisms.

With an architectural framework in place, we move up into
the mechanism for indexing and searching service descrip-
tions. SDS and INS/Twine both stand out as innovative, fault-
tolerant approaches for query routing based on service
descriptions. However, despite its clever search scheme, and a
commendable focus on security, SDS relies on several central-
ized components which make it unsuitable for larger systems
(its index, as well, strains under high advertisement load). In
contrast, INS/Twine complements its DHT “undercarriage” by
providing a load-balanced indexing scheme which scales well
while ensuring search completeness, and eliminates irrelevant
query results by an exact matching of queries to a powerful,
flexible service description scheme. In combination with a
soft-state advertisement mechanism, INS/Twine is a good can-
didate for the basis of our service-discovery scheme.

We now reach the latter design requirements that have
more to do with social aspects of large-scale systems rather
than the underlying mechanics. In terms of interoperability,
platform independence and standardized acceptance in the
Web community, the Web Service framework emerges as a
clear winner. While its basic UDDI service registry approach
is to a great extent based on a centralized, non-scalable archi-
tecture (and hence does not address the multi-domain aspect
of the design), the set of academic efforts to expand it to a
distributed architecture show that it has potential to be used
in a multiple domain setting. Of all the approaches presented
above, this framework has the most extensive community sup-
port, with a well-defined service description scheme that
includes a platform-independent interface-description. Both
the service description and the service execution protocols are
open and extensible, allowing for a great degree of extensibili-
ty and the inclusion of well-accepted security mechanisms.
The rich set of publicly-available standards and tools included
in the Web Services framework would be a valuable tool to
incorporate into a more expansive service discovery scheme,
such as the one that is the eventual aim of our work.

CONCLUSION

In this article, we have provided an in-depth analysis of vari-
ous service and resource discovery approaches. In order to

✍

■ Figure 21. Kademlia binary tree. Subtrees and corresponding prefixes are shown (boxed), w.r.t. the node with prefix 0011.

Common
prefix: 0 Common

prefix: 001

Common
prefix: 00Node

0011

No common prefix

0

0 0

0

0

0

0 0 0 0

0

01

1

1

1

1

1

1

1 1

1

1

1 1

1

1

1

0

0

0

0 0

Space of 160-bit numbers11...11 00...00

IEEE Communications Surveys & Tutorials • 4th Quarter 200728

provide a formal structure to our discussion and guide the
reader through this document, we first defined a set of evalua-
tion criteria that are important to any large-scale, multido-
main discovery approach and outlined their related aspects.
By analyzing each approach against these criteria, we brought
out the strengths and weaknesses of each approach against
the goal of an Internet-scale multi-domain service discovery
architecture.

Based on this analysis, a comparison study of these
approaches is conducted and a brief description of our find-
ings is presented in the Technology Comparison Section.
Since this survey has revealed that no single approach meets
all of our defined objectives, we have focused instead on
choosing those approaches that could be combined to build
the desired service-discovery architecture. In our technology
selection, we have focused on three particular approaches:
Web Services, INS/Twine and structured P2P systems as
potential components of such an architecture. They are cho-
sen for their scalability, standardization, performance, effec-
tiveness, security aspects, system independence and
implementation support.

In the time since it was originally conducted, this survey
has served as the groundwork in designing a new large-scale
discovery mechanism that is multi-domain, multi-technology
and aims to unite multiple diverse service-discovery platforms
[79]. This platform-independent, extensible approach enables
cross-technology and cross-domain service discovery, supports
domain-level access control for discovery operations, and has
bounded query lookup time. During the design process, the
set of criteria and requirements, as well as the variety of inno-
vative approaches that we have encountered in our survey has
helped us immensely in all aspects of design and implementa-
tion.

APPENDIX 1 P2P INDEXING TECHNIQUES

Chord [43], CAN (Content Addressable Network) [51], Tapestry
[52] and Kademlia [80] are decentralized distributed indexing
approaches whose only purpose is to provide structured search
for associating a content to a location (node) in the network. A
brief description of each of these approaches is given below.

CHORD

Chord provides an efficient way for mapping a key onto a
node that stores the value associated with that key. Chord is
designed for peer-to-peer networks and works well even when
the network is changing rapidly. In Chord, each node in the
P2P network is given an m-bit ID and arranged into a logical
ring in order of ascending ID. Now consistent hashing is
applied to map the keys, also identified by an m-bit ID, to the
nodes. To lookup a key in O(logN) time, where N is the num-
ber of nodes, each node keeps a finger table. For example a
node with m-bit ID X will have m – 1 entries in its finger
table listing nodes that will map the keys X + 1, X + 2, X +
4, X + 8 … X + 2m–1. It has been shown that, in the average
case, keys are uniformly distributed, and the number of keys
transferred due to joining or removal of node is kept small.

CAN

CAN is essentially a distributed, Internet-scale hash table that
maps file names to their locations in the network. CAN sup-
ports insertion, deletion and lookup or (Key, value) pairs in
the distributed hash table. CAN uses a virtual ddimensional
Cartesian coordinate space (Fig. 19) to store (key K, value V)

pairs as follows:
• First, K is deterministically mapped onto a point P in the

coordinate space.
• The (K, V) pair is then stored at the node that owns the

zone within which point P lies.
The lookup of K is performed by mapping K to P and

requesting the corresponding node for V. If that node does
not contain K then the request is routed from node to node
until it reaches the node in whose zone P lies.

A new node, willing to join the CAN network, must first
discover an existing CAN node. Half of the coordinate space
belonging to the discovered node is assigned to the new node
using the CAN routing mechanism. The new node also learns
the IP addresses of its neighbors. Meanwhile the neighbors of
the discovered node are notified of the new node, and update
their routing tables accordingly.

TAPESTRY

Tapestry is a self-administering, fault-tolerant location and
routing infrastructure that provides routing of messages
directly to the “closest” copy of an object (or service) using
only point-to-point links between nodes and without central-
ized resources.

Tapestry names nodes using IDs with fixed number of dig-
its. A local routing map, or neighbor map is used at each
node, to incrementally route messages to the node with the
destination ID digit by digit, from the right to the left (Fig.
20). Each node therefore has a neighbor map with multiple
levels, where each level represents a matching suffix up to a
digit position in the ID. For example, assume a 3 digit ID. A
node with ID 456 will have a routing table with entries like
xx0, xx1, …, xx9 for first column, x06, x16, …, x96 for second
column and 056, 156, …, 956 at third column. If the node
receives a routing request for ID 236 (at k-th hop of the rout-
ing request k-digit suffix of the destination ID will be same as
the ID of the routing node), it will look into the entry x36 in
column two and forward the message to that node. Figure 20
illustrates the routing process of a typical request.

Although the routing information is distributed across the
network the location of an object in the system is stored at a
specific node, called the root node, in the system. A lookup is
performed by the root node and returns the ID of the node
that contains the requested object. Later, the distributed rout-
ing mechanism is used to reach the node.

KADEMLIA

Kademlia is a P2P distributed hash table, based on XOR met-
ric. Like other DHT approaches, node IDs and indexes (or
keys) belong to the same 160-bit space. Distance between two
identifiers, say x and y, is defined as d(x, y) = x ⊕ y. Each node
is treated as a leaf in a logical binary tree. A node’s position in
the tree is determined by the shortest unique prefix of its ID.
Each node keeps track of at least one other node in every
maximal subtree that does not contain it. As shown in Fig. 21 a
node with prefix 0011 keeps track of at least one node in the
subtrees with prefix 1, 01, 000 and 0010 respectively. In each
query routing hop an intermediate node (say A) forwards the
query to another node (say B), which is closer to the search ID
by at least on more bit than A; i.e. d(B, Q) ≤ 1/2d(A, Q),
assuming Q is the query ID. This allows a node to route a
query to a target node (with longest common prefix with the
search ID) in Kademlia tree in O(logN) hops. The XOR-met-
ric used in Kademlia is symmetric which allows a Kademlia
node to learn (and update its routing table) from the incoming
queries. This is a notable advantage of Kademlia over Chord.

IEEE Communications Surveys & Tutorials • 4th Quarter 2007 29

SUMMARY

ADVANTAGES
P2P architectures are designed with consideration to fault-tol-
erance, scalability, and robustness. Structured search schemes
allow the lookup process to be faster, more efficient and more
specific than the broadcasting or random walk techniques
adopted in partially structured and unstructured approaches.
Structured search schemes also have the advantage of not
requiring global knowledge of the network.

DISADVANTAGES

The Tapestry root node may be a single point of failure.
Moreover, the other nodes must have prior knowledge to
allow them to identify the root node. Finally, such systems
assume the existence of fixed-length IDs.

REFERENCES

[1] D. Booth et al., “Web Service Architecture,” 2004, available:
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/

[2] F. Zhu, M. Mutka, and L. Ni, “Service Discovery in Pervasive
Computing Environments,” IEEE Pervasive Computing, vol. 4,
no. 4, 2005, pp. 81–90.

[3] C. Lee and S. Helal, “Protocols for Service Discovery in Dynam-
ic and Mobile Networks,” Int’l. J. Computer Research, vol. 11,
no. 1, 2002, pp. 1–12.

[4] G. Richard III, “Service Advertisement and Discovery: Enabling
Universal Device Cooperation,” IEEE Internet Computing, vol.
4, 2000, pp. 18–26.

[5] S. Helal, “Standard for Service Discovery and Delivery,” IEEE
Pervasive Computing, 2002, pp. 95–100.

[6] B. SIG, “Specification of the Bluetooth System — Core,”
http: / /www.bluetooth.org/docs/Bluetooth V11 Core
22Feb01.pdf, Feb. 22 2001.

[7] M. Nidd, “Service Discovery in Deapspace,” Aug. 2001, pp.
39–45.

[8] S. Helal et al., “Konark — A Service Discovery and Delivery Pro-
tocol for Ad-Hoc Networks,” Wireless Commun. and Net., vol.
3, Mar. 2003, pp. 2107–13.

[9] O. Mathieu, D. Montgomery, and S. Rose, “Empirical Measure-
ments of Service Discovery Technologies,” IEEE Pervasive Com-
puting, May 2001.

[10] M. Barbeau and E. Kranakis, “Modeling and Performance
Analysis of Service Discovery Strategies in Ad Hoc Networks,”
Proc. Int’l. Conf. Wireless Networks, Las Vegas, Nevada, USA,
2003, pp. 23–26.

[11] C. Bettstetter and C. Renner, “A Comparison of Service Dis-
covery Protocols and Implementation of the Service Location
Protocol,” 2000, http://citeseer.nj.nec.com/article/bettstetter00
comparison.html

[12] C. Lee and S. Helal, “Context Attributes: an Approach to
Enable Context-Awareness for Service Discovery,” Symp. Appli-
cations and the Internet, Jan. 2003, pp. 22–30.

[13] G. Chen and D. Kotz, “Context-Sensitive Resource Discovery,”
Proc. 1st IEEE Int’l. Conf. Pervasive Computing and Commun.
(PerCom’03), Mar. 2003, pp. 243–52.

[14] Salutation Consortium, “Salutation Architecture Specification
(part-1),” June 1999, ftp://ftp.salutation.org/salute/

[15] —, “Salutation Architecture Specification (part-2),” June
1999, available: ftp://ftp.salutation.org/salute/

[16] P. J. Leach and R. Salz, “UUIDs and GUIDs,” Feb. 1998, sta-
tus: INTERNET-DRAFT, hegel.ittc.ukans.edu/topics/internet/
internet-drafts/draft-l/draft-leachuuids-guids-01.txt

[17] Sun Microsystems, Inc., “RFC 1057: RPC — Remote Procedure
Call Protocol Specification Version 2,” 1988, Available:
http://www.ietf.org/rfc/rfc1057.txt

[18] Salutation Consortium, “Salutation-Lite Open Source,” 2003,
available: http://www.salutation.org/lite/ litesource.htm

[19] S. E. Czerwinski et al., “An Architecture for a Secure Service
Discovery Service,” MobiCom ’99: Proc. 5th Annual ACM/IEEE
Int’l. Conf. Mobile Computing and Networking, New York, NY,

USA: ACM Press, 1999, pp. 24–35.
[20] B. Bloom, “Space/Time Trade-offs in Hash Coding with Allow-

able Errors,” Commun. ACM, vol. 13, no. 7, 1970, pp. 422–26.
[21] E. Guttman et al., “RFC 2608: Service Location Protocol, Ver-

sion 2,” 1999, Status: PROPOSED STANDARD, Available:
http://www.ietf.org/rfc/

[22] SRVLOC, “Service Location Protocol (svrloc) Working Group,”
1997, http://www.ietf.org/html.charters/svrloccharter.html

[23] C. Perkins and E. Guttman, “RFC 2610: DHCP Options for Ser-
vice Location Protocol,” 1999, status: PROPOSED STANDARD,
available: http://www.ietf.org/rfc/

[24] IANA, “IANA Protocol and Service Names,” 2004,
http://www.iana.org/assignments/service-names

[25] P. S. Pierre, S. Isaacson, and I. McDonald, “Printer Service
Template,” 2002, available: http://www.iana.org/assignments/
svrloctemplates/ printer.1.0.en

[26] Sun Microsystems, “Device Architecture Specification,” Sun
Microsystem, Inc, Tech. Rep., June 2003, www.jini.org/nonav/
standards/davis/doc/specs/html/devicearchspechtml.

[27] Sun MicroSystems, “The Davis Project,” 2003, available:
http://davis.jini.org/

[28] W. AdjieWinoto et al., “The Design and Implementation of
an Intentional Naming System,” Symp. Operating Systems
Princip les, 1999, available: citeseer.nj.nec.com/
adjiewinoto99design.html, pp. 186–201.

[29] M. Balazinska, H. Balakrishnan, and D. Karger, “INS/Twine: A
Scalable Peer-to-Peer Architecture for Intentional Resource Dis-
covery,” Proc. 1st Int’l. Conf. Pervasive Computing, Springer-
Verlag, 2002, pp. 195–210.

[30] UPnP Forum, “UPnP device architecture 1.0,” May 2003,
http://www.upnp.org/download/ UPnPDA10 20000613.htm

[31] W. W. W. C. W3C, “Extensible Markup Language (XML) 1.0
(2nd Edition),” 2000, available: http://www.w3.org/TR/2000/
RECxml- 20001006

[32] Y. Y. Goland et al., “Internet-draft: Simple Service Discovery
Protocol/1.0,” 1998, http://www.upnp.org/download/draft_
cai_ssdp_v1_03.txt.

[33] R. Troll, “Automatically choosing an IP address in an Ad-Hoc
IPv4 network, IETF draft,” 1999.

[34] E. Christensen et al., “Web Service Definition Language,”
2001, available: http://www.w3.org/TR/wsdl

[35] I. Foster et al., “The Physiology of the Grid: An Open Grid
Services Architecture for Distributed Systems Integration, Open
Grid Service Infrastructure WG, Global Grid Forum,” 2002,
available: http://www.globus.org/research/papers/ogsa.pdf

[36] UDDI Consortium, “UDDI Technical White Paper,” 2002, avail-
able: http://www.uddi.org/pubs/Iru_UDDI Technical_White_
Paper.pdf

[37] J. Garofalakis et al., “Web Service Discovery Mechanisms:
Looking for a Needle in a Haystack?” Int’l. Wksp. Web Engi-
neering, 2004.

[38] P. Rompothong and T. Senivongse, “A Query Federation of
UDDI Registries,” ISICT, 2003.

[39] M. Schlosser et al., “A Scalable and Ontology-Based p2p
Infrastructure for Semantic Web Services,” Proc. 2nd Int’l.
Conf. P2P Computing, 2002.

[40] M. Montebello and C. Abela, “Daml Enabled Web Service and
Agents in Semantic Web,” Wksp. Web, Web Services and
Database Systems, LNCS, 2003.

[41] Y. Li et al., “Pwsd: A Scalable Web Service Discovery Architec-
ture based on Peer-to-Peer Overlay Network,” Proc. APWeb,
LNCS, vol. 3007, 2004.

[42] C. Schmidt and M. A. Parashar, “Peer-to-Peer Approach to
Web Service Discovery,” WWW: Internet and Web Information
Systems, vol. 7, 2004.

[43] I. Stoica et al., “Chord: A Scalable Peer-to-Peer Lookup Proto-
col for Internet Applications,” IEEE/ACM Trans. Net., vol. 11,
no. 1, Feb. 2003, pp. 17–32.

[44] W. W. W. C. W3C, “Xquery,” 2004, http://www.w3.org/XML/
Query

[45] T. Berners-Lee, R. Fielding, and L. Masinter, “RFC 2396: Uni-
form Resource Identifiers (URI): Generic syntax,” 1998, status:
PROPOSED STANDARD, ftp://ftp.internic.net/rfc/rfc2396.txt,
ftp://ftp.math.utah.edu/pub/rfc/rfc2396.txt

[46] B. Traversat et al. Yeager, “Project JXTA 2.0 Super-Peer Virtu-

IEEE Communications Surveys & Tutorials • 4th Quarter 200730

al Network,” 2003, http://www.jxta.org/project/www/docs/
JXTA2.0protocols1.pdf

[47] R.Rivest, “RFC 1321: The MD5 Message-Digest Algorithm,”
1992.

[48] F. Zhu, M. Mutka, and L. Ni, “Splendor: A Secure, Private,
and Location-Aware Service Discovery Protocol Supporting
Mobile Services,” Proc. 1st IEEE Int’l. Conf. Pervasive Comput-
ing and Commun. (PerCom’03), Mar. 2003,
http://www.cse.msu.edu/ zhufeng/splendor.pdf, pp. 235–42.

[49] M. Ripeanu and I. Foster, “Mapping the Gnutella Network:
Macroscopic Properties of Large-Scale Peer-to-Peer Systems,”
Proc. 1st Int’l. Wksp. PeertoPeer Systems (IPTPS ’02), 2002.

[50] I.Clarke, O.Sandberg, and B.Wiley, “Freenet: A Distributed
Anonymous Information Storage and Retrieval System,” Wksp.
Design Issues in Anonymity and Unobservability, June 2000.

[51] S. Ratnasamy et al., “A Scalable Content-Addressable Net-
work,” Proc. 2001 Conf. Applications, Technologies, Architec-
tures, and Protocols for Computer Commun., ACM Press,
2001, pp. 161–72.

[52] B. Y. Zhao et al., “Tapestry: A Resilient Global-Scale Overlay for
Service Deployment,” IEEE JSAC, vol. 22, no. 1, 2004, pp. 41–53.

[53] D. Meyer, “Administratively Scoped IP Multicast,” RFC 2365,
Internet Engineering Task Force, July 1998.

[54] C. Dabrowski, K. L. Mills, and J. Elder, “Understanding Con-
sistency Maintenance in Service Discovery Architectures in
Response to Message Loss,” Active Middleware Services, 2002,
pp. 51–60.

[55] ——, “Understanding Consistency Maintenance in Service
Discovery Architectures During Communication Failure,” Wksp.
Software and Performance, 2002, pp. 168–78.

[56] C. Dabrowski and K. Mills, “Understanding Self-Healing in
Service Discovery Systems,” Proc. 1st Wksp. Selfhealing Sys-
tems , ACM Press, 2002, http: / /doi.acm.org/10.1145/
582128.582132, pp. 15–20.

[57] S. Kent and R. Atkinson, “RFC 2406: IP Encapsulating Security
Payload (ESP),” 1998, status: PROPOSED STANDARD.

[58] S. Chokhani et al., “RFC 3647: Internet X.509 Public Key
Infrastructure Certificate Policy and Certification Practices
Framework,” 2003, status: INFORMATIONAL.

[59] T. Dierks and C. Allen, “RFC 2246: The TLS Protocol Version
1.0,” 1999, status: PROPOSED STANDARD.

[60] OASIS WSS TC, “Web Services Security: SOAP Message Securi-
ty 1.0,” 2004, http://docs.oasis-open.org/wss/2004/01/oasis-
200401-wss-soap-message-security-1.0.pdf

[61] —, “Web Services Security: UsernameToken Profile 1.0,”
2004, http://docs.oasis-open.org/wss/2004/01/oasis- 200401-
wss-username-token-profile-1.0.pdf

[62] —, “Web Services Security: X.509 Certificate Token Profile,”
2004, http://docs.oasis-open.org/wss/2004/01/oasis- 200401-
wss-x509-token-profile-1.0.pdf

[63] P. S. Pierre and T. Mori, “Salutation and SLP,” the Salutation
Consortium, http://www.salutation.org/techtalk/slp.htm

[64] IBM, “Web Service Resource Framework,” 2004, http://www-
106.ibm.com/developerworks/library/ws-resource/

[65] J. Allard et al., “ J. M. U. A. A. J. Interoperability,” Proc. 2003
Int’l. Symp. Applications and the Internet, 2003.

[66] T. Koponen and T. Virtanen, “A Service Discovery: A Service
Broker Approach,” Proc. 37th Hawaii Int’l. Conf. System Sci-
ences, 2004, http://csdl.computer.org/comp/proceedings/hicss/
2004/2056/09/ 205690284b.pdf

[67] S. R. Livingstone, “Service Discovery In Pervasive Systems,”
2003, the School of Information Technology and Electrical
Engineering, University of Queensland, Australia, http://innov-
expo.itee.uq.edu.au/2003/exhibits/s370816/

[68] OpenSLP, 2003, http://www.openslp.org/
[69] Sun Microsystems, “Jini Technology Starter Kit Version 2.0-

002,” Feb. 2004, http://wwws.sun.com/software/communi-
tysource/ jini/download.html

[70] MIT, “INS/Twine v2,” 2002, http://nms.lcs.mit.edu/software/
instwine/ins-2-0.tgz

[71] Intel, Inc., “Intel Software for UPnP Technology,” 2004,
http://www.intel.com/technology/UPnP/download.htm

[72] SourceForge, “Linux SDK for UPnP Devices 1.2.1 (libupnp),”
February 2003, http://upnp.sourceforge.net/

[73] Project JXTA, “JXTA J2SE 2.2.1,” 2004, http://platform.

jxta.org/java/release/2004Q1 Churrasco/release note.html
[74] —, “JXTA-C,” 2004, http://jxta-c.jxta.org/
[75] IBM, “IBM WebSphere Software Platform,” http://www-

306.ibm.com/software/info1/websphere/index.jsp
[76] Microsoft, “Microsoft .NET framework,” 2004,

http://msdn.microsoft.com/netframework/
[77] Sun Microsystems, “Sun ONE Web Services,” 2004.
[78] The Globus Alliance, “The Globus Toolkit,” 2004, http://www-

unix.globus.org/toolkit/
[79] N. Limam et al., “OSDA: Open Service Discovery Architecture

for Efficient Cross-Domain Service Provisioning,” Computer
Commun. J., special issue for Emerging Middleware for Next
Generation Networks, 2005, to appear.

[80] P. Maymounkov and D. Mazi, “Kademlia: A Peer-to-Peer
Information System based on the XOR Metric,” Proc. IPTPS,
2002, pp. 53–65.

BIOGRAPHIES

REAZ AHMED (r5ahmed@uwaterloo.ca) received the B.Sc. and M.Sc.
degrees in Computer Science from the Bangladesh University of
Engineering and Technology (BUET), Dhaka, Bangladesh in 2000
and 2002, respectively. He completed Ph.D. program in 2007 in
Computer Science at the University of Waterloo, Canada. He has
served as a reviewer for many international conferences and jour-
nals. His research interests include wide area service discovery,
loosely-coupled distributed databases and content sharing peer-
to-peer networks with focus on search flexibility, efficiency and
robustness. He is the recipient of the Canadian Commonwealth
Scholarship, University of Waterloo Graduate Scholarship, and
Merit scholarship and Dean’s award in BUET.

NOURA LIMAM (noura.limam@lip6.fr) received the B.S. degree from
the National School of Computer Science, Tunisia, in 2001, and
M.S. degree in networking from the University of Paris VI, France,
in 2002. In 2003, she was with Ucopia Communications Inc.,
France, at the R&D Department where she was involved in the
development of a management tool for enterprise wireless net-
works. From 2004 to 2005 she was a research assistant at the
School of Computer Science at the University of Waterloo, Cana-
da. She is currently working towards the Ph.D. degree at the Uni-
versity of Paris VI. Her research interests include network and
service management, service discovery and service-oriented archi-
tectures. Jin Xiao (j2xiao@bbcr.uwaterloo.ca) received his B.Sc.
first class honors in Computer Science from the University of Cal-
gary, Canada in 2001. He is currently a Ph.D. candidate at the
School of Computer Science at University of Waterloo, Canada. He
conducts research in the areas of network and distributed systems
management, economic modeling, network service quality assur-
ance, and autonomous management system design.

YOUSSEF IRAQI (y iraqi@du.edu.om) received M.S. and Ph.D. degrees
in computer science from the University of Montreal, Canada, in
2000 and 2003, respectively. He is currently an Assistant Professor
and Chairman, Department of Computer Science, Dhofar Universi-
ty, Sultanate of Oman. From 2003 to 2005 he was a research
assistant professor at the School of Computer Science at the Uni-
versity of Waterloo, Canada, and from 1996 to 1998 he was a
research assistant at the Computer Science Research Institute of
Montreal. His research interests include network and distributed
systems management, resource management in multimedia wired
and wireless networks, and peer-to-peer networking.

RAOUF BOUTABA (rboutaba@uwaterloo.ca) is a Professor of Com-
puter Science at the University of Waterloo, Canada. His research
interests include network, resource and service management in
wired and wireless networks. He is the founder and Editor-in-
Chief of the IEEE Transactions on Network and Service Manage-
ment and on the editorial boards of several other journals. He is a
distinguished lecturer of the IEEE Communications Society, the
chairman of the IEEE Technical Committee on Information Infra-
structure and the IFIP Working Group 6.6 on Network and Dis-
tributed Systems Management. He has received several best paper
awards and other recognitions such as the Premiers research
excellence award.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile ()
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.50000
 0.50000
 0.50000
 0.50000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.12500
 0.12500
 0.12500
 0.12500
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e002c00200075006d002000650069006e0065006e00200042006500720069006300680074002000fc00620065007200200064006900650020005000440046002f0058002d00310061002d004b006f006d007000610074006900620069006c0069007400e4007400200065007200680061006c00740065006e00200075006e00640020005000440046002d0044006f006b0075006d0065006e007400650020006e00750072002000640061006e006e0020007a0075002000650072007300740065006c006c0065006e002c002000770065006e006e0020007300690065002000fc0062006500720020006400690065007300650020004b006f006d007000610074006900620069006c0069007400e400740020007600650072006600fc00670065006e002e0020005000440046002f00580020006900730074002000650069006e0065002000490053004f002d004e006f0072006d0020007a0075006d002000410075007300740061007500730063006800200076006f006e0020006400690067006900740061006c0065006e00200044007200750063006b0076006f0072006c006100670065006e002e0020005700650069007400650072006500200049006e0066006f0072006d006100740069006f006e0065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c0065006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002000660069006e00640065006e002000530069006500200069006d0020004100630072006f006200610074002d00480061006e00640062007500630068002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200034002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064002700e900760061006c0075006500720020006c006100200063006f006e0066006f0072006d0069007400e9002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d0031006100200065007400200064006500200063006f006e0064006900740069006f006e006e006500720020006c0061002000700072006f00640075006300740069006f006e00200064006500200064006f00630075006d0065006e007400730020005000440046002000e000200063006500740074006500200063006f006e0066006f0072006d0069007400e9002e0020005000440046002f0058002000650073007400200075006e00650020006e006f0072006d0065002000490053004f00200064002700e9006300680061006e0067006500200064006500200063006f006e00740065006e00750020006700720061007000680069007100750065002e00200050006f0075007200200065006e0020007300610076006f0069007200200070006c0075007300200073007500720020006c006100200063007200e9006100740069006f006e00200064006500200064006f00630075006d0065006e00740073002000500044004600200063006f006e0066006f0072006d00650073002000e00020005000440046002f0058002d00310061002c00200063006f006e00730075006c00740065007a0020006c00650020004700750069006400650020006400650020006c0027007500740069006c0069007300610074006500750072002000640027004100630072006f006200610074002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e00200034002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF005000440046002f0058002d0031006100206e9662e0306e30ec30dd30fc30c87528304a30883073658766f84f5c62107528306b4f7f75283057307e30593002005000440046002f00580020306f30b030e930d530a330c330af002030b330f330c630f330c4590963db306b304a3051308b002000490053004f00206a196e96306730593002005000440046002f0058002d0031006100206e9662e0306e658766f84f5c6210306b306430443066306f0020004100630072006f006200610074002030e630fc30b630ac30a430c9309253c2716730573066304f30603055304430024f5c62103057305f00200050004400460020306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200034002e003000204ee5964d30678868793a3067304d307e30593002>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f007300200050004400460020006500200065006d0069007400690072002000720065006c0061007400f300720069006f007300200073006f00620072006500200063006f006e0066006f0072006d0069006400610064006500200063006f006d0020006f0020005000440046002f0058002d00310061002e0020005000440046002f0058002000e900200075006d0020007000610064007200e3006f002000640061002000490053004f00200070006100720061002000740072006f0063006100200064006500200063006f006e0074006500fa0064006f00200067007200e1006600690063006f002e002000500061007200610020006f00620074006500720020006d00610069007300200069006e0066006f0072006d006100e700f50065007300200073006f00620072006500200063006f006d006f00200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200065006d00200063006f006e0066006f0072006d0069006400610064006500200063006f006d0020006f0020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006f0020004700750069006100200064006f002000550073007500e100720069006f00200064006f0020004100630072006f006200610074002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200034002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c00200061007400200072006100700070006f007200740065007200650020006f006d0020006f0076006500720068006f006c00640065006c007300650020006100660020005000440046002f0058002d003100610020006f00670020006b0075006e002000700072006f0064007500630065007200650020005000440046002d0064006f006b0075006d0065006e007400650072002c002000680076006900730020006400650020006f0076006500720068006f006c0064006500720020007300740061006e00640061007200640065006e002e0020005000440046002f005800200065007200200065006e002000490053004f002d007300740061006e0064006100720064002000740069006c00200075006400760065006b0073006c0069006e0067002000610066002000670072006100660069006b0069006e00640068006f006c0064002e00200059006400650072006c006900670065007200650020006f0070006c00790073006e0069006e0067006500720020006f006d0020006f007000720065007400740065006c007300650020006100660020005000440046002d0064006f006b0075006d0065006e007400650072002c00200064006500720020006f0076006500720068006f006c0064006500720020005000440046002f0058002d00310061002c002000660069006e00640065007200200064007500200069002000620072007500670065007200760065006a006c00650064006e0069006e00670065006e002000740069006c0020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200034002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d00200064006500200063006f006d007000610074006900620069006c006900740065006900740020006d006500740020005000440046002f0058002d0031006100200074006500200063006f006e00740072006f006c006500720065006e00200065006e00200061006c006c00650065006e0020005000440046002d0064006f00630075006d0065006e00740065006e002000740065002000700072006f006400750063006500720065006e002000640069006500200063006f006d007000610074006900620065006c0020007a0069006a006e002e0020005000440046002f0058002000690073002000650065006e002000490053004f002d007300740061006e0064006100610072006400200076006f006f00720020006800650074002000750069007400770069007300730065006c0065006e002000760061006e002000670072006100660069007300630068006500200069006e0068006f00750064002e002000520061006100640070006c0065006500670020006400650020006700650062007200750069006b00650072007300680061006e0064006c0065006900640069006e0067002000760061006e0020004100630072006f00620061007400200076006f006f00720020006d00650065007200200069006e0066006f0072006d00610074006900650020006f00760065007200200068006500740020006d0061006b0065006e002000760061006e0020005000440046002d0064006f00630075006d0065006e00740065006e002000640069006500200063006f006d007000610074006900620065006c0020007a0069006a006e0020006d006500740020005000440046002f0058002d00310061002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200034002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e00650073002000700061007200610020007200650061006c0069007a0061007200200075006e00200069006e0066006f0072006d006500200073006f0062007200650020006c006100200063006f006d007000610074006900620069006c006900640061006400200063006f006e0020005000440046002f0058002d0031006100200079002000670065006e006500720061007200200064006f00630075006d0065006e0074006f007300200050004400460020007300f3006c006f00200073006900200073006f006e00200063006f006d00700061007400690062006c00650073002e0020005000440046002f005800200065007300200075006e002000650073007400e1006e006400610072002000490053004f0020007000610072006100200065006c00200069006e00740065007200630061006d00620069006f00200064006500200063006f006e00740065006e00690064006f00200067007200e1006600690063006f002e002000500061007200610020006f006200740065006e006500720020006d00e1007300200069006e0066006f0072006d00610063006900f3006e00200061006300650072006300610020006400650020006300f3006d006f00200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400690062006c0065007300200063006f006e0020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006c006100200047007500ed0061002000640065006c0020007500730075006100720069006f0020006400650020004100630072006f006200610074002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200034002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006d00e400e4007200690074007400e400e40020005000440046002f0058002d00310061002d00790068007400650065006e0073006f0070006900760075007500640065006e0020006a00610020006c0075006f00640061002000730065006e0020006d0075006b006100690073006900610020005000440046002d0061007300690061006b00690072006a006f006a0061002e0020005000440046002f00580020006f006e002000490053004f002d007300740061006e006400610072006400690073006f006900740075002000670072006100610066006900730065006e002000730069007300e4006c006c00f6006e0020006500730069007400790073006d0075006f0074006f002e0020004c0069007300e40074006900650074006f006a00610020005000440046002f0058002d00310061002d00790068007400650065006e0073006f00700069007600690065006e0020005000440046002d0061007300690061006b00690072006a006f006a0065006e0020006c0075006f006e006e00690073007400610020006f006e002000410064006f006200650020004100630072006f0062006100740020002d006b00e400790074007400f6006f0070007000610061007300730061002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200034002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000760065007200690066006900630061007200650020006c006100200063006f006e0066006f0072006d0069007400e0002000610020005000440046002f0058002d0031006100200065002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200073006f006c006f00200069006e0020006300610073006f00200064006900200063006f006e0066006f0072006d0069007400e0002e0020005000440046002f0058002000e800200075006e006f0020007300740061006e0064006100720064002000490053004f00200070006500720020006c006f0020007300630061006d00620069006f00200064006900200063006f006e00740065006e00750074006f0020006700720061006600690063006f002e002000500065007200200075006c0074006500720069006f0072006900200069006e0066006f0072006d0061007a0069006f006e0069002000730075006c006c006100200063007200650061007a0069006f006e006500200064006900200064006f00630075006d0065006e00740069002000500044004600200063006f006e0066006f0072006d0069002000610020005000440046002f0058002d00310061002c00200063006f006e00730075006c00740061007200650020006c0061002000470075006900640061002000640065006c006c0027007500740065006e007400650020006400690020004100630072006f006200610074002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200034002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e500200072006100700070006f007200740065007200650020006f006d0020005000440046002f0058002d00310061002d006b006f006d007000610074006900620069006c00690074006500740020006f00670020006c0061006700650020005000440046002d0064006f006b0075006d0065006e00740065007200200062006100720065002000680076006900730020006b006f006d007000610074006900620065006c002e0020005000440046002f005800200065007200200065006e002000490053004f002d007300740061006e006400610072006400200066006f00720020006700720061006600690073006b00200069006e006e0068006f006c006400730075007400760065006b0073006c0069006e0067002e00200048007600690073002000640075002000760069006c0020006800610020006d0065007200200069006e0066006f0072006d00610073006a006f006e0020006f006d002000680076006f007200640061006e0020006400750020006f007000700072006500740074006500720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006b0061006e002000640075002000730065002000690020006200720075006b00650072006800e5006e00640062006f006b0065006e00200066006f00720020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200034002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e006400200065006e00640061007300740020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200072006100700070006f007200740065007200610020006f006d0020005000440046002f0058002d00310061002d007300740061006e00640061007200640020006f0063006800200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d0020006600f6006c006a00650072002000640065006e006e00610020007300740061006e0064006100720064002e0020005000440046002f0058002000e4007200200065006e002000490053004f002d007300740061006e00640061007200640020006600f6007200200075007400620079007400650020006100760020006700720061006600690073006b007400200069006e006e0065006800e5006c006c002e0020004d0065007200200069006e0066006f0072006d006100740069006f006e0020006f006d002000680075007200200064007500200073006b00610070006100720020005000440046002d0064006f006b0075006d0065006e007400200073006f006d0020006600f6006c006a006500720020005000440046002f0058002d0031006100200068006900740074006100720020006400750020006900200061006e007600e4006e00640061007200680061006e00640062006f006b0065006e0020006600f600720020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200034002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF004300610064006d007500730020004d00650064006900610057006f0072006b0073002000730065007400740069006e00670073002000760065007200730069006f006e00200043004d0057005f0041006300720036005f00560032002e002000200041006c006c002000730065007400740069006e0067007300200070006f00730074006500640020006f006e0020007700770077002e006300610064006d00750073006d00650064006900610077006f0072006b0073002e0063006f006d002e00200020>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [576.000 783.000]
>> setpagedevice

