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Abstract—An effective Collaborative Intrusion Detection Net-
work (CIDN) allows distributed Intrusion Detection Systems
(IDSes) to collaborate and share their knowledge and opinions
about intrusions, to enhance the overall accuracy of intrusion
assessment as well as the ability of detecting new classes of
intrusions. Toward this goal, we propose a distributed Host-
based IDS (HIDS) collaboration system, particularly focusing
on acquaintance management where each HIDS selects and
maintains a list of collaborators from which they can consult
about intrusions. Specifically, each HIDS evaluates both the
false positive (FP) rate and false negative (FN) rate of its
neighboring HIDSes’ opinions about intrusions using Bayesian
learning, and aggregates these opinions using a Bayesian decision
model. Our dynamic acquaintance management algorithm allows
each HIDS to effectively select a set of collaborators. We evaluate
our system based on a simulated collaborative HIDS network.
The experimental results demonstrate the convergence, stability,
robustness, and incentive-compatibility of our system.

Index Terms—Host-based intrusion detection systems, ac-
quaintance management, collaborative networks, computer se-
curity.

I. INTRODUCTION

IN recent years, cyber attacks from the Internet are be-
coming more sophisticated and harder to detect. Intrusions

can have many forms such as worms, spamware, viruses,
spyware, denial-of-service attacks (DoS), malicious logins,
etc. The potential damage of these intrusions can be signif-
icant if they are not detected promptly. A recent example
is the Conficker worm which infected more than 3 million
Microsoft server systems during the year of 2008 to 2009,
with the estimated economic loss of 9.1 billion dollars [1].
Contemporary intrusion attacks compromise a large number
of nodes to form botnets. Attackers not only harvest private
data and identify information from compromised nodes, but
also use those compromised nodes to launch attacks such as
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distributed-denial-of-service (DDoS) attacks [2], distribution
of spam messages, or organized phishing attacks [3].

To protect computer users from malicious intrusions, In-
trusion Detection Systems (IDSes) are designed to monitor
network traffic and computer activities and to raise intrusion
alerts to network administrators or security officers. IDSes
can be categorized into host-based Intrusion Detection Sys-
tems (HIDSes) or network-based Intrusion Detection Sys-
tems (NIDSes) according to their targets, and into signature-
based IDS or anomaly-based IDS according to their detection
methodologies.

A NIDS monitors the network traffic from/to one or a group
of computers and compare the data with known intrusion
patterns. Examples of NIDS are Snort [4] and Bro [5]. A HIDS
identify intrusions by comparing observable intrusion data
such as log files and computer activities against suspicious
patterns. Examples of HIDSes are OSSEC [6], an anti-virus
software, and Tripwire [7]. A signature-based IDS identifies
malicious code if a match is found with a pattern in the
attack signature database. An anomaly-based IDS [8], [9],
on the other hand, monitors the traffic or behavior of the
computer and classifies that as either normal or anomalous
based on some heuristics or rules, rather than patterns or
signatures. Alerts are raised when anomalous activities are
found. Compared to NIDS, a HIDS has a deeper sight into
each host so it can detect intrusions which are hard to identify
by observing network traffic only. However, a single HIDS
lacks an overall view of the network and can be easily com-
promised by new attacks. Collaboration among HIDSes can
effectively improve the overall intrusion detection efficiency
by using collective information from collaborative HIDSes.
In this paper, we focus on the collaboration among HIDSes.
A signature-based IDS can accurately identify intrusions and
the false positive rate is low compared to anomaly-based
detection. However, it is not effective for zero-day attacks,
polymorphic, and metamorphic malware [10]. An anomaly-
based IDS may detect zero-day attacks by analyzing their
abnormal behaviors. However, an anomaly-based detection
usually generates a high false positive rate.

Traditional HIDSes work in isolation and they rely on
downloading signatures or rules from their vendors to detect
intrusions. They may be easily compromised by unknown
or new threats since not a single vendor has comprehensive
knowledge about all intrusions. Collaboration among HIDSes
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can overcome this weakness by having each peer HIDS benefit
from the collective knowledge and experience shared by other
peers. This enhances the overall accuracy of intrusion assess-
ment as well as the ability to detect new classes of intrusions.
A Collaborative Intrusion Detection Network (CIDN) is an
overlay network which provides a collaboration infrastructure
for HIDSes to share information and experience with each
other to achieve improved detection accuracy. The topology of
a CIDN can be centralized, such as DShield [11], CRIM [12],
and N-version AV [13], or distributed, such as Indra [14],
NetShield [15], and Host-based CIDN [16]. Note that the
CIDN collaboration framework is also applicable to NIDSes.

However, in a CIDN, malicious insiders may send false
information to mislead other HIDSes to make incorrect in-
trusion decisions, and in this way, render the collaboration
system not useful. Furthermore, HIDSes in the collaboration
network may have different intrusion detection expertise levels
and capabilities. How a HIDS selects collaborators to achieve
optimal efficiency is an important problem to solve for a
CIDN. We define a CIDN acquaintance management as the
process of identifying, selecting, and maintaining collaborators
for each HIDS. An effective acquaintance management is
crucial to the design of a CIDN.

We provide a Bayesian learning technique that helps each
HIDS identify expert nodes and novice nodes based on past
experience with them. Specifically, the false positive (FP) rate
and false negative (FN) rate of each collaborator. Dishonest
collaborators are identified and removed from its collaborator
list. We define feedback aggregation in CIDN as a decision
method whether or not to raise an alarm based on the collected
opinions (feedback) from collaborator HIDSes. We propose
a Bayesian decision model for feedback aggregation. Bayes
theory is used to estimate the conditional probability of intru-
sions based on feedback from collaborators. A cost function
is modeled to include the false positive decision cost and false
negative decision cost. A decision of whether to raise alarm or
not is chosen to achieve the minimal cost of false decisions.

For collaborator selection, a HIDS may add all honest HID-
Ses into its collaborator list to achieve maximized detection
accuracy. However, including a large list of collaborators may
result in high maintenance cost. We define an acquaintance
selection as the process to find the list of collaborators to
minimize false decision cost and maintenance cost. Existing
approaches for acquaintance management often set a fixed
number of collaborators [17], or a fixed accuracy threshold
to filter out less honest or low expertise collaborators [18],
[19], [20]. These static approaches lack flexibility, and the
fixed acquaintance length or accuracy threshold may not be
optimal when the context changes (e.g. some nodes leave the
network and some new nodes join the network). Our proposed
acquaintance management algorithm can dynamically select
collaborators in any context setting to obtain high efficiency
at minimum cost.

For collaborator maintenance, the HIDSes in our system
periodically update their collaborators lists to guarantee an
optimal cost. A probation list is used to explore and learn the
quality of new potential collaborators. New collaborators stay
in the probation list for a certain period before their feedback
is considered for intrusion decision.
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Fig. 1. Overlay network of collaborating HIDSes.

We evaluate our system using a simulated collaboration
network using a Java-based discrete-event simulation frame-
work. The results show that the proposed Bayesian decision
model outperforms the threshold-based model [13], which
only counts the number of intrusion reports, in terms of
false decision cost. The results also show that our dynamic
acquaintance management algorithm outperforms the static
approaches of setting a fixed acquaintance length or accu-
racy threshold. Finally, our approach also achieves several
desired properties, such as efficiency, stability, robustness, and
incentive-compatibility.

Major contributions of our work are summarized as follows:

1) A novel Bayesian decision model is proposed for feed-
back aggregation in collaborative intrusion detection
systems to achieve minimal false decision cost;

2) An acquaintance selection algorithm is devised to opti-
mally select collaborators, which leads to minimal over-
all cost including false decision cost and maintenance
cost;

3) A dynamic acquaintance management algorithm is pro-
posed to integrate the concept of probation period and
consensus negotiation;

The rest of the paper is organized as follows. Section II
gives a brief introduction of CIDNs and some of their im-
portant components. Section III describes our formalization
of HIDS learning model and feedback aggregation. Acquain-
tance selection and management algorithms are presented
in Section IV. We discuss several potential threats to our
system and corresponding defenses in Section V. We then
present evaluation results demonstrating the effectiveness of
our acquaintance management and its desired properties in
Section VI. We discuss some related work in Section VII, and
conclude this paper in Section VIII.

II. COLLABORATIVE INTRUSION DETECTION NETWORK

A Collaborative Intrusion Detection Network (CIDN) is
shown in Figure 1 as an overlay network of collaborating
HIDSes. HIDSes from different vendors are connected in
a peer-to-peer manner. Each peer HIDS maintains a list of
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TABLE I
SUMMARY OF NOTATIONS

Symbol Meaning
X ∈ {0, 1} Random variable denoting whether there is an attack or not
Y ∈ {0, 1} Random variable of positive or negative diagnose from a HIDS
y A feedback instance vector from acquaintances
Y Feedback vector from acquaintances
C Set of acquaintance candidates
A Set of Acquaintances
l The acquaintance list length
δ The decision of raising alarm or not
R(.) The risk cost of false alarms and miss intrusions
M(.) The maintenance cost of acquaintances
Cfp, Cfn Unit cost of false alarm and miss intrusion
Ca Unit cost of maintaining each acquaintance
π0, π1 Priory probability of no-intrusion and with-intrusion
Ti, Fi True positive rate and false positive rate of IDS i
λ Forgetting factor of the past experience

collaborators. We use the terminology Acquaintance List to
represent the list of collaborators for each HIDS and use the
terms collaborator and acquaintance interchangeably in this
paper. Note that the relationship of collaboration is symmetric.
i.e., if HIDS X is in HIDS Y’s acquaintance list, then HIDS
Y is also in HIDS X’s acquaintance list. HIDSes may have
different expertise levels in intrusion detection. They can
be compromised or dishonest when providing feedback to
collaborators. They may also be self-interest driven when
providing assistance to other peers.

When a HIDS detects suspicious behavior for example from
an executable file but lacks confidence to make a decision
whether it should raise an alarm or not, it may send a
consultation request to its collaborators for diagnosis. The
consultation request contains the description of the suspicious
activities or the executable file, including the suspicious in/out
communication traffic, the log entries of suspicious activities,
or the binaries source of the suspicious activities. The feed-
back from collaborators contains the assessment result of the
request, which is either a “yes” for under-attack or a “no”
for no-attack. All feedback will be aggregated and a final
decision is made based on the aggregation result. However, a
malicious (or malfunctioning) HIDS in a CIDN may send false
intrusion assessments to its collaborators, resulting in false
positive or false negative decisions made by the requesters. It
is thus important to evaluate peer HIDSes and choose the ones
that likely provide higher detection accuracy. Acquaintance
learning allows a HIDS to evaluate the detection accuracy of
its collaborators based on its past experience with them.

In our system, HIDSes use test messages to evaluate the
detection accuracy and truthfulness of other HIDSes. Test
messages are “bogus” consultation requests, and sent out in
a way that makes them difficult to be distinguished from
real consultation requests. The testing node needs to know
beforehand the true diagnosis result of the test message and
compare it with the received feedback to derive detection
accuracy of other HIDSes. For example, the samples of known
malware and legitimate files can be used as test messages. The

usage of test messages helps with identifying inexperienced
and/or malicious nodes within the network. The idea of “test
messages” was previously introduced in [21] and [16]. It
is adopted in our CIDN for each HIDS to gain experience
with others quickly at affordable communication cost, and to
evaluate the detection accuracy of its acquaintances.

Collaborative intrusion decision is a process for a HIDS to
aggregate the intrusion assessments (feedback) from its col-
laborators and make an overall decision. The evaluation result
of acquaintances’ detection accuracy is used as a parameter
in the feedback aggregation function to improve collaborative
intrusion detection accuracy. The acquaintance management
system updates acquaintance list periodically to recruit new
collaborators and/or remove unwanted ones. The collaboration
relationship is established based on mutual consensus, i.e., it
is established only if both sides agree. We will elaborate on
our acquaintance management for CIDN in Section IV.

III. HIDS DETECTION ACCURACY EVALUATION AND

FEEDBACK AGGREGATION

To select collaborators, a HIDS should first learn the
qualification of all candidate HIDSes. In this section, we first
introduce a Bayesian learning model to evaluate the detection
accuracy of the candidates. A Bayesian decision model is then
used to optimally aggregate feedback from acquaintances.

A. Detection Accuracy for a Single HIDS

To better capture the qualification of a HIDS, we use both
false positive (FP) and true positive (TP) rates to represent
the detection accuracy of a HIDS. Let A denote the set of
acquaintances and random variables Fk and Tk denote the
FP and TP rates of acquaintance k ∈ A respectively. FP
is the probability that the HIDS gives a positive diagnosis
(under-attack) under the condition of no-attack, and TP is the
probability that the HIDS gives a correct positive diagnosis
under the condition of under-attack. Let random variable
X ∈ {0, 1} represent the random event on whether there
is an attack or not, and let random variable Y ∈ {0, 1}
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denote whether the HIDS makes a positive diagnosis or not.
Then FP and TP can be written as P[Y = 1|X = 0] and
P[Y = 1|X = 1], respectively. The list of notations is
summarized in Table I.

Let Fk and Tk be the probability density functions of
Fk and Tk whose support is [0, 1]. We use the notation
Z0 : Yk = 1|X = 0 and Z1 : Yk = 1|X = 1 to represent
the conditional variables that acquaintance k gives positive
decision under the conditions where there is no attack and
there is an attack respectively. They can be seen as two
independent random variables satisfying Bernoulli distribution
with successful rates Fk and Tk, respectively. The past experi-
ence with acquaintance k can be seen as the samples from the
Bernoulli distributions. According to the Bayesian probability
theory [22], the posterior distribution of Fk and Tk given a set
of observed samples can be represented using a Beta function,
written as follows:

Fk ∼ Beta(xk|α0
k, β

0
k) =

Γ(α0
k+β0

k)

Γ(α0
k)Γ(β

0
i )
x
α0

k−1
k (1 − xk)

β0
k−1,(1)

Tk ∼ Beta(yk|α1
k, β

1
k) =

Γ(α1
k+β1

k)

Γ(α1
k)Γ(β

1
i )
y
α1

k−1
k (1 − yk)

β1
k−1,(2)

where Γ(·) is the gamma function [23], and its parameters α0
k,

α1
k and β0

k , β1
k are given by

α0
k =

u∑
j=1

λt0k,j r0k,j β0
k =

u∑
j=1

λt0k,j (1− r0k,j);

α1
k =

v∑
j=1

λt1k,j r1k,j β1
k =

v∑
j=1

λt1k,j (1− r1k,j), (3)

where α0
k, β

0
k, α

1
k, β

1
k are the cumulated instances of false

positive, true negative, true positive, and false negative, re-
spectively, from acquaintance k. r0k,j ∈ {0, 1} is the jth
diagnosis result from acquaintance k under no-attack. r0k,j = 1
means the diagnosis from k is positive while there is actually
no attack happening. r0k,j = 0 means otherwise. Similarly,
r1k,j ∈ {0, 1} is the jth diagnosis data from acquaintance k
under attack where r1k,0 = 1 means that the diagnosis from
k is positive under attack, and r1k,0 = 0 means otherwise.
Parameters t0k,j and t1k,j denote the time elapsed since the
jth feedback is received. λ ∈ [0, 1] is the forgetting factor
on the past experience. A small λ makes old observations
quickly forgettable. We use exponential moving average to
accumulate past experience so that old experience takes less
weight than new experience. u is the total number of no-attack
cases among the past records and v is the total number of
attack cases.

To make the parametric updates scalable to data storage and
memory, we can use the following recursive formula to update
α0
k, α

1
k and β0

k, β
1
k:

αm
k (tj) = λ(tmk,j−tmk,j−1)αm

k (tmk,j−1) + rmk,j ;

βm
k (tj) = λ(tmk,j−tmk,j−1)βm

k (tmk,j−1) + rmk,j , (4)

where l = 0, 1 and j− 1 indexes the previous data point used
for updating αm

k or βm
k . Through this way, only the previous

state and the current state are required to be recorded, which
is efficient in terms of storage compared to when all states are
recorded in Equation 3.
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Fig. 2. Bayes risk for optimal decisions when Cfp = 1 and Cfn = 5.

B. Feedback Aggregation

When a HIDS detects suspicious activities and is not confi-
dent about its decision, it sends out the description of the sus-
picious activities or the related executable files to its collabora-
tors for consultation. The node receives diagnosis results from
its collaborators, denoted by vector y = {y1,y2, ...,y|A|},
where yi ∈ {0, 1}, for 0 < i < |A|, is the feedback
from acquaintance i. We use X ∈ {0, 1} to denote the
scenario of “no-attack” or “under-attack”, and Y ∈ {0, 1}|A|

to denote all possible feedback from acquaintances. The
conditional probability of a HIDS being “under-attack” given
the diagnosis results from all acquaintances can be written as
P[X = 1|Y = y]. Using Bayes’ Theorem [24] and assuming
that the acquaintances provide diagnoses independently and
their FP rate and TP rate are known, we have

P[X=1|Y=y]=
P[Y=y|X=1]P[X=1]

P[Y=y|X=1]P[X=1]+P[Y=y|X=0]P[X=0]

=
π1

∏|A|
k=1 T

yk

k (1− Tk)
1−yk

π1

∏|A|
k=1 T

yk

k (1− Tk)1−yk + π0

∏|A|
k=1 F

yk

k (1− Fk)1−yk

,

where π0 = P[X = 0] and π1 = P[X = 1], such that π0 +
π1 = 1, are the prior probabilities of the scenarios of “no-
attack” and “under-attack”, respectively. yk ∈ {0, 1} is the
kth element of vector y.

Since Tk and Fk are both random variables with distribu-
tions as in Equations (1) and (2), we can see that the condi-
tional probability P[X = 1|Y = y] is also a random variable.
We use a random variable P to denote P[X = 1|Y = y].
Then P takes a continuous value over domain [0, 1]. We use
fP (p) to denote the probability density function of P .

When α and β are sufficiently large, a Beta distribution
can be approximated by Gaussian distribution according to

Beta(α, β) ≈ N
(

α
α+β ,

√
αβ

(α+β)2(α+β+1)

)
. Then the density

function of P can be also approximated using Gaussian
distribution. By Gauss’s approximation formula, we have,

E[P ] ≈ 1

1 +
π0

∏|A|
k=1 E[Fk]

yk (1−E[Fk])
1−yk

π1
∏|A|

k=1 E[Tk]yk (1−E[Tk])1−yk

=
1

1 + π0

π1

∏|A|
k=1

α1
k+β1

k

α0
k
+β0

k

(
α0

k

α1
k

)yk(
β0
k

β1
k

)1−yk

. (5)

Let Cfp and Cfn denote the marginal cost of a FP decision
and a FN decision. We assume there is no cost when a correct



324 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 9, NO. 3, SEPTEMBER 2012

decision is made. We use marginal cost because the cost of a
FP may change in time depending on the current state. Cfn

largely depends on the potential damage level of the attack.
For example, an intruder intending to track a user’s browsing
history may have lower Cfn than an intruder intending to
modify a system file. We define a decision function δ(y) ∈
{0, 1}, where δ = 1 means raising an alarm and δ = 0 means
no alarm. Then, the Bayes risk can be written as:

R(δ) =

∫ 1

0

(Cfp(1− x)δ + Cfnx(1− δ))fP (x)dx

= δCfp

∫ 1

0

(1 − p)fP (p)dp+ (1 − δ)Cfn

∫ 1

0

pfP (p)dp

=

∫ 1

0

CfnxfP (x)dx+ δ

(
Cfp − (Cfp + Cfn)

∫ 1

0

xfP (x)dx

)

= CfnE[P ] + δ(Cfp − (Cfp + Cfn)E[P ]), (6)

where fP (p) is the density function of P . To minimize the
risk R(δ), we need to minimize δ(Cfp − (Cfp +Cfn)E[P ]).
Therefore, we raise an alarm (i.e. δ = 1) if

E[P ] ≥ Cfp

Cfp + Cfn
. (7)

Let τ =
Cfp

Cfp+Cfn
be the threshold. If E[P ] ≥ τ , we raise an

alarm, otherwise no alarm is raised. The corresponding Bayes
risk for the optimal decision is:

R(δ) =

⎧⎪⎨
⎪⎩
Cfp(1 − E[P ]) if E[P ] ≥ τ ,

CfnE[P ] otherwise.

(8)

An example of the Bayes risk for optimal decisions when
Cfp = 1 and Cfn = 5 is illustrated in Figure 2.

IV. ACQUAINTANCE MANAGEMENT

Intuitively when a HIDS consults a larger number of
acquaintances, it can achieve higher detection accuracy and
lower risk of being compromised. However, having more
acquaintances causes higher maintenance cost since the HIDS
needs to allocate resources for each node in its acquaintance
list. When a HIDS makes a decision about how many ac-
quaintances to recruit, both the intrusion risk cost and the
maintenance cost should be taken into account. When adding a
node as an acquaintance does not lower the total cost, then the
node shall not be added into the acquaintance list. However,
how to select acquaintances and how many acquaintances
to include are crucial to build an efficient CIDN. In this
section, we first define the acquaintance selection problem,
then a corresponding solution is devised to find the optimal
set of acquaintances. Finally, we propose an acquaintance
management algorithm for HIDSes to learn, recruit, update,
or remove their acquaintances dynamically.

A. Problem Statement

Let Ai denote the set of acquaintances of HIDS i. Let
Mi(Ai) be the cost for HIDS i to maintain the acquaintance
set Ai. We use Ri(Ai) to denote the risk cost of missing
intrusions and/or false alarms for HIDS i, given the feedback

of acquaintance set Ai. In the rest of this section, we drop
subscript i from our notations for the convenience of presen-
tation.

Our goal is to select a set of acquaintances from a list of
candidates so that the overall cost R(A)+M(A) is minimized.
We define the problem as follows:

Given a list of acquaintance candidates C, we need to find
a subset of acquaintances A ⊆ C, such that the overall cost
R(A) +M(A) is minimized.

In practice, maintenance cost of acquaintances may
not be negligible since acquaintances send test mes-
sages/consultations periodically to ask for diagnosis. It takes
resources (CPU and memory) for the HIDS to receive, analyze
the requests, and reply with corresponding answers. The selec-
tion of Mi(.) can be user defined on each host. For example,
a simple maximum acquaintance length restriction can be
mapped to M(A) = Cmax(|A| − L, 0), where L ∈ N+

is the acquaintance length upper-bound and C ∈ [0,∞) is the
penalty of exceeding the bound.

The risk cost can be expressed as:

R(A) = CfnP [δ = 0|X = 1]P [X = 1]

+ CfpP [δ = 1|X = 0]P [X = 0]

where Cfn, Cfp denote the marginal cost of missing an
intrusion and raising a false alarm, respectively. P [X = 1] =
π1, P [X = 0] = π0 are the prior probabilities of under-attack
and no-attack, where π0 + π1 = 1. Note that in practice π1

can be learned from the history and be updated whenever a
new threat is found. A moving average method can be used
to update the estimated value.

The above equation can be further written as:

R(A) = Cfnπ1

∑
∀y∈{0,1}|A||δ(y)=0

P [Y = y|X = 1] (9)

+ Cfpπ0

∑
∀y∈{0,1}|A||δ(y)=1

P [Y = y|X = 0]

= Cfnπ1

∑
∀y∈{0,1}|A||δ(y)=0

|A|∏
i=1

(Ti)
yi(1− Ti)

1−yi

+ Cfpπ0

∑
∀y∈{0,1}|A||δ(y)=1

|A|∏
i=1

(Fi)
yi(1 − Fi)

1−yi

= Cfnπ1

∑
∀y∈{0,1}|A||f(y)<1

|A|∏
i=1

(Ti)
yi(1− Ti)

1−yi

+ Cfpπ0

∑
∀y∈{0,1}|A||f(y)≥1

|A|∏
i=1

(Fi)
yi(1− Fi)

1−yi

=
∑

y∈{0,1}|A|
min{Cfnπ1

∏
i

T yi

i (1− Ti)
1−yi ,

Cfpπ0

∏
i

Fyi

i (1− Fi)
1−yi}

where Ti, Fi are the TP rate and FP rate of acquaintance

i respectively. f(y) =
Cfnπ1

∏|A|
i=1 (Ti)

yi (1−Ti)
1−yi

Cfpπ0

∏|A|
i=1 (Fi)yi (1−Fi)1−yi

. ∀y ∈
{0, 1}l|δ(y) = 1 refers to the combination of decisions which
causes the system to raise an alarm and vice versa.
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B. Acquaintance Selection Algorithm

To solve such a subset optimization problem, the brute
force method is to examine all possible combinations of
acquaintances and select the one which has the least overall
cost. However, the computation complexity is O(2n). It is
not hard to see that the order of selecting acquaintances
does not affect the overall cost. We propose an acquaintance
selection algorithm based on a heuristic approach to find an
acquaintance set which achieves satisfactory overall cost. In
this algorithm, the system always selects the nodes which
bring the lowest overall cost.

For the ease of demonstration, We assume the maintenance
cost can be written as follow:

M(A) = Cal = Ca|A| (10)

where Ca is the unit maintenance cost of each acquain-
tance, which includes the cost of communication, detection
assistance, and test messages. Note that any other form of
maintenance cost can be easily included into the algorithm.

Algorithm 1 Acquaintance Selection (C, Lmin, Lmax)
Require: A set of acquaintance candidates C
Ensure: A set of selected acquaintances A with minimum

length Lmin and max length Lmax which brings the
minimum overall cost

1: Quit = false //quit the loop if Quit = true
2: A ⇐ ∅
3: U = min(π0Cfp, π1Cfn) //initialize the overall cost

while there is no acquaintance. min(π0Cfp, π1Cfn) is
the cost when a node makes a decision without feedback
from collaborators

4: while Quit = false do
5: //select the node that reduces cost most in each iteration
6: Dmax = −MAXNUM //initialize the maximum cost

reduction to the lowest possible
7: for all e ∈ C do
8: A = A ∪ e
9: if U − R(A) − M(A) > Dmax //see Equation (9)

and Equation (10) for R(A) and M(A) then
10: Dmax = U −R(A)−M(A)
11: emax = e
12: end if
13: A = A \ e //remove e from A
14: end for
15: if (Dmax > 0 and |A| < Lmax) or |A| < Lmin then
16: A = A ∪ emax

17: C = C \ emax //remove emax from C
18: U = U −Dmax

19: else
20: Quit = true
21: end if
22: end while

As shown in Algorithm 1, in the beginning, the acquaintance
list is empty. The initial cost is the minimum cost of the
decision based only on the prior information (line 3). For
each loop, the system selects a node from the acquaintance
candidate list which brings the lowest overall cost and stores

it into emax (lines 7-14), where U − R(A) − M(A) is the
amount of cost reduced by adding a node into the acquaintance
list. When such a node is found, it is then moved to the
acquaintance list if the current acquaintance length is less than
Lmin or the cost is reduced by adding the new node and the
acquaintance length does not exceed Lmax. The loop stops
when no node can be added into A any further.

C. Acquaintance Management Algorithm

In the previous section, we devised an algorithm to select
acquaintances from a list of candidates. However, collabora-
tion is usually based on mutual consensus. If node A selects
B as an acquaintance but B does not select A (non-symmetric
selection), then the collaboration is not established.

Algorithm 2 Managing Acquaintance & Probation Lists
1: Initialization :
2: A ⇐ ∅ //Acquaintance list.
3: P ⇐ ∅ //Probation list.
4: lp = lini //initial Probation length
5: //Fill P with randomly selected nodes
6: while |P| < lp do
7: e ⇐ select a random node
8: P ⇐ P ∪ e
9: end while

10: set new timer event(tu, “SpUpdate”)
11: Periodic Maintenance:
12: at timer event ev of type “SpUpdate” do
13: //Merge the first mature node into the acquaintance list.
14: e ⇐ selectOldestNode(P)
15: C ⇐ A //C is the temporary candidate list
16: if te > tp //te is the age of node e in the probation list

then
17: P ⇐ P \ e
18: if Te > Tmin and Fe < Fmax //Te and Fe are the true

positive rate and false positive rate of the node e then
19: C ⇐ C ∪ e
20: end if
21: end if
22: //Consensus protocol
23: S =Acquaintance Selection(C, lmin,max(lmin, q

q+1 l
max))

24: //Send requests for collaboration and receive responses
25: Saccp ⇐ RequestandReceiveCollaboration(S, ttimeout)
26: A ⇐ Saccp //Only nodes that accept the collaboration

invitations are moved into the acquaintance list
27: //Refill P with randomly selected nodes
28: while |P| < max(q|A|, lmin) do
29: e ⇐ Select a random node not in A
30: P ⇐ P ∪ e
31: end while
32: set new timer event(tu, “SpUpdate”)
33: end timer event

We propose a distributed approach for a HIDS in the CIDN
to select and manage acquaintances and a consensus protocol
to allow a HIDS to deal with the non-symmetric selection
problem. To improve the stability of the acquaintance list,
we propose to use a probation period on each new node for
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the HIDS to learn about the new node before considering it
as an acquaintance. For this purpose, each HIDS maintains
a probation list, where all new nodes remain during their
probation periods. A node also communicates with nodes in its
probation list periodically to evaluate their detection accuracy.
The purpose of the probation list is thus to explore potential
collaborators and keep introducing new qualified nodes to the
acquaintance list.

Suppose that node i has two sets Ai and Pi, which are
the acquaintance list and the probation list respectively. The
corresponding false positive rate and true positive rate of both
sets are FA

i , TA
i and FP

i , TP
i . To keep learning the detection

accuracy of the acquaintances, a node sends test messages
to nodes in both the acquaintance list and the probation list
periodically, and keeps updating their estimated false positive
rates and true positive rates. Let lmax be the maximum number
of HIDSes in both the acquaintance and the probation list. We
set this upper-bound because the amount of resources used for
collaboration is proportional to the number of acquaintances it
manages. lmax is determined by the resource capacity of each
HIDS. Let lmin be the minimum length of a probation list and
q be the parameter that controls the length of the probation
list lp compared to the length of acquaintance list la, such that
lmin ≤ lp ≤ qla. The parameters lmin and q are used to tune
the trade-off between the adaptability to the situation where
nodes join or leave the network frequently (“high churn rate”),
and the overhead of resources used on testing new nodes.

The acquaintance management procedure for each node is
shown in Algorithm 2. The acquaintance list A is initially
empty and the probation list P is filled by lini random
nodes to utilize the resources in exploring new nodes. An
acquaintance list updating event is triggered every tu time
units. A is updated by including new trusted nodes from
P . A node that stays at least tp time units in probation
is called a mature node. Only mature nodes are allowed
to join the acquaintance list (lines 15-21). Mature nodes
with bad qualification will be abandoned right away. After
that the acquaintance selection algorithm is used to find the
optimal candidate list. Collaboration requests are sent out for
nodes which are selected in the optimal list. If an acceptance
is received before expiration time then the collaboration is
confirmed, otherwise the node is abandoned (lines 22-26).
Then, P is refilled with new randomly chosen nodes (lines
28-31).

Several properties are desirable for an effective acquain-
tance management algorithm, including convergence, stabil-
ity, robustness, and incentive-compatibility for collaboration.
When our acquaintance management is in place, we are
interested to know with whom the HIDS nodes end up collab-
orating with and how often they change their collaborators. We
list potential malicious attacks against our acquaintance man-
agement system and present corresponding defense strategies
in Section V. We also expect to see cooperative nodes are
rewarded and dishonest nodes penalized.

In Section VI we evaluate our acquaintance management
algorithm, to determine whether it achieves the above proper-
ties.

V. COMMON THREATS AND DEFENSE

Efficient collaborative detection can improve detection abil-
ity of the whole group. However, the collaboration man-
agement itself may become the target of attacks and be
compromised. For example, an HIDS may be compromised
and turn to be a malicious insider, and then disseminate false
information to other HIDSes in the network. An effective
CIDN design should be robust to common insider attacks.
In this section, we describe common attacks to CIDN and
provide defense mechanisms against them.

1) Sybil attacks: occur when a malicious peer in the system
creates a large amount of pseudonyms (fake identities) [25].
This malicious peer uses fake identities to gain larger influence
over the false diagnosis in the network. For example, fake
nodes can gain the trust of some victims and then send them
false diagnoses to cause false negative decisions. Our defense
against sybil attacks relies on an authentication mechanism.
Authentication makes registering fake identities difficult. In
our model, the registration of new user IDs requires puzzle
solving (such as CAPTCHA) which requires human intel-
ligence to handle. In this way, creating a large number of
fake IDs is not practical for an attacker. In addition, our
collaboration model requires HIDSes to allocate resources
to answer diagnosis requests from their collaborators before
being able to influence the collaborators, which is costly to do
with many fake identities. This way, our CIDN protects the
collaborative network from sybil attacks.

2) Newcomer attacks: occur when a malicious peer can
easily register as a new user [26]. Such a malicious peer
creates a new ID for the purpose of erasing its bad history
with other peers in the network. Our model handles this type
of attack by requiring probation period for all newcomers. It
takes a long time (for example, more than 10 days) for a new
node to gain trust and before they pass probation period, their
feedback is simply not considered by other peers. In this way,
it takes a long time for a node to gain influence again by
registering a new ID. Therefore, our system resists newcomer
attacks.

3) Betrayal attacks: occur when a trusted peer suddenly
turns into a malicious one and starts sending false diagnoses. A
collaborative detection can be degraded dramatically because
of this type of attacks. Our adoption of forgetting factor (Equa-
tion 3) enables a faster learning of the malicious behavior (see
Section VI-E Figure 14 for evaluation results). Our dynamic
acquaintance selection algorithm then quickly removes the
malicious node from acquaintance list. It will take quite a
while for the malicious node to gain back trust because even
it gets the chance to join the probation list again, it needs to
stay in the probation list for a certain period of time. This
design makes it difficult for this malicious node to continue
deceiving or to come back as a collaborator within a short
period of time.

4) Collusion attacks: happen when a group of malicious
peers cooperate together by providing false diagnosis in order
to compromise the network. First, our acquaintance selection
algorithm employs random selection of potential collaborators.
It will be unlikely for multiple malicious peers to be selected
together by one peer as collaborators. In addition, in our
system, peers will not be adversely affected by collusion
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attacks. This is because, in our learning model, each peer
relies only on its own experience to detect dishonest peers. Not
relying on recommendation or reputation makes the system
immune to dishonest third party opinions. This is primarily the
reason why we do not consider third party recommendations
in the current work. We leave this for future investigation
after devising an effective approach for coping with collusion
attacks (see Section VIII).

VI. EVALUATION

In this section, we describe the conducted experiments
to demonstrate the desirable properties of our acquaintance
management algorithm. We evaluate the cost efficiency of our
Bayesian decision model, cost and time efficiency of the ac-
quaintance selection algorithm, and several desired properties
of the acquaintance management algorithm. Each experimental
result presented in this section is derived from the average
of a large number of replications with an overall negligible
confidence interval.

TABLE II
SIMULATION PARAMETERS

Parameter Value Description
R 10/day Test message rate
λ 0.95 Forgetting factor

Cfp/Cfn 20/100 Unit cost of false positive/negative decisions
Ca 0.01 Maintenance cost of one acquaintance
tp 10 days Probation period
tu 1 day Acquaintance list update interval
lini 10 Initial probation length
lmax 20 Maximum total number of acquaintances
lmin 2 Minimum probation list length
Tmin 0.5 Minimum acceptable true positive rate
Fmax 0.2 Maximum acceptable false positive rate

q 0.5 Length ratio of probation to acquaintance list
π1 0.1 Prior probability of intrusions

A. Simulation Setting

We simulate an environment of n HIDS peers collaborating
together by adding each other as acquaintances. We adopt two
parameters to model the detection accuracy of each HIDS,
namely, false positive rate (FP) and false negative rate (FN).
Notice that in reality most HIDSes have low FP (< 0.1)
and FN is normally in the range of [0.1, 0.5] [13]. This is
because false positives can severely damage the reputation
of the product, so vendors strive to control their FP rate at
a low level. In our experiment, we select parameters which
reflect real world properties. To test the detection accuracy
of acquaintances, each peer sends test messages where their
correct answers are known beforehand. Test messages are sent
following a Poisson process with average arrival rate R. R will
be determined in the next subsection. We use a simulation
day as the time unit in our experiments. The diagnosis results
given by a HIDS are simulated following a Bernoulli random
process. If a test message represents a benign activity, the
HIDS i raises alarm with a probability of FPi. Similarly, if the
test message represents intrusions, an alarm will be raised with
a probability of 1-FNi. All parameter settings are summarized
in Table II.

B. Determining the Test Message Rate

The goal of our first experiment is to study the relationship
between test message rates and FP, FN learning speed. We
simulate two HIDSes A and B. A sends B test messages to
ask for diagnosis, and learns the FP and FN of B based on
the quality of B’s feedback. The learning procedure follows
Equations (1), (2), and (3). We fix the FN of B to 0.1, 0.2,
and 0.3 respectively. Under each case, we run the learning
process under different test message rates, 2/day, 10/day, and
50/day respectively. We observe the change of estimated FN
over time, plotted in Figure 3. We see that when R is 2/day,
the estimated FN converges after around 30 days in the
case of FN=0.2. The converging time is slightly longer and
shorter in the cases of FN=0.3 and FN=0.1, respectively. When
R is increased to 10/day, the converging time decreases to
around 10 days. In the case of R=50/day, the corresponding
converging time is the shortest (around 3 days) among the
three cases. Increasing the test message rate R to 50/day does
not reduce much learning process time. Based on the above
observation, we choose R=10/day and the probation period tp
to be 10 days as our system parameters. In this way, the test
message rate is kept low and the learned FN and FP values
converge after the probation period.

The second experiment is to study the efficiency of learning
results after our chosen probation period. We fix R=10/day,
tp=10/day, and randomly choose FN of node B uniformly
among [0, 1]. We repeat the experiments 100 times with
different FNs. The FNs estimated using our learning process
till the end of probation period are plotted in Figure 4. We can
see that in all different settings of FNs, the estimated FN rates
are close to the actual FN rates after the probation period.

C. Efficiency of our Feedback Aggregation

In this experiment, we evaluate the effectiveness of our
Bayesian decision based feedback aggregation by comparing
it with a threshold based aggregation. We have described
our Bayesian decision model in Section III-B. In a simple
threshold based feedback aggregation method, if the number
of HIDSes reporting intrusions is larger than a predefined
threshold, then the system raises an alarm. The threshold-
based decision is used in N-version cloud anti-virus systems
[13].

We set up eight HIDSes {HIDS0,HIDS1, ...,HIDS7} with
their FP and FN rates randomly chosen from the range [0.1,
0.5]. HIDS0 sends consultations to all other HIDSes, collects
and aggregates feedback to make intrusion decisions. The
costs of false positive and false negative decisions are Cfp=20
and Cfn=100 respectively. We compare the average false
detection cost using the Bayesian decision model and the
simple threshold-based approach. Figure 5 shows that the cost
of threshold decision largely depends on the chosen threshold
value. An appropriate threshold can significantly decrease the
cost of false decisions. In contrast, the Bayesian decision
model does not depend on any threshold setting and prevails
over the threshold decision under all threshold settings. This is
because the threshold decision treats all participants equally,
while the Bayesian decision method recognizes different de-
tection capabilities of HIDSes and takes them into account
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in the decision process. For example, if a HIDS asserts that
there is intrusion, our Bayesian model may raise an alarm
if the HIDS has a low FP rate and ignores the warning if
the HIDS has a high FP rate. However, the threshold based
decision model will either raise an alarm or not based on the
total number of HIDSes which raise warnings and compare it
with a predefined threshold, irrespective of the individual that
issued the warning.

D. Cost and the Number of Collaborators

We define risk cost to be the expected cost from false
decisions such as raising false alarms (FP) and missing the
detection of an intrusion (FN). We show that introducing more
collaborators can decrease the risk cost. In this experiment,
we study the impact of the number of collaborators on the
risk cost. We set up four groups with an equal number of
HIDSes. Nodes in all groups have the same FP rate of 0.03,
but their FN rates vary from 0.1 to 0.4, depending on the
group they are in. Inside each group every node collaborates
with every other node. We are interested in the risk cost as
well as the maintenance cost. The maintenance cost is the
cost associated with the amount of resource that is used to
maintain the collaboration with other nodes, such as answering
diagnosis requests from other HIDSes. Since our purpose is
to capture the concept of maintenance cost but not to study
how much it is, we assume the maintenance cost to be linearly
proportional to the number of collaborators with a unit rate
Ca=0.01 (see Table II).

We increase the size of all groups and observe the average
cost of nodes in each group. From Figure 6, we can see that

in all groups, the costs drop down fast in the beginning and
slow down as the groups’ sizes increase. After an optimal point
(marked by large solid circles), the costs slowly increase. This
is because when the number of collaborators is large enough,
the cost saving by adding more collaborators becomes small,
and the increment of maintenance cost becomes significant.
We find that groups with higher detection accuracy have
lower optimal costs. Also they need a smaller number of
collaborators to reach the optimal costs. For example, in the
case of FN = 0.4, 13 collaborators are needed to reach the
optimal, while the number of collaborators required is 5 in the
case of FN = 0.1.

E. Efficiency of Acquaintance Selection Algorithms

We learned in the previous section that when the number of
collaborators is large enough, adding more collaborators does
not decrease the overall cost because of the associated mainte-
nance cost. An acquaintance selection algorithm is proposed
in Algorithm 1. In this section, we compare the efficiency
of acquaintance selection using the brute force algorithm and
our acquaintance selection algorithm. We create 15 HIDSes
as candidate acquaintances with FP and FN rates randomly
chosen from intervals [0.01, 0.1] and [0.1, 0.5], respectively.
Both algorithms are implemented in Java and run on a PC
with AMD Athlon dual core processor 2.61GHZ, and with
1.93 GB RAM. We start the candidate set size from 1 and
gradually increase the size. We observe the cost efficiency
and running time efficiency of both algorithms.

Figure 7 shows that the brute force algorithm performs
slightly better with respect to acquaintance list quality since
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Fig. 9. Acquaintances distribution on day 25.
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Fig. 10. Acquaintances distribution on day
200.
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the overall cost using its selected list is slightly lower. How-
ever, Figure 8 shows that the running time of the brute force
method increases significantly when the candidate set size
exceeds 11, and continues to increase exponentially, while our
algorithm shows much better running time efficiency. These
experiments suggest to use the brute force method only when
the size of candidates list is small (≤ 11). When the candidates
list is large, our greedy algorithm should be used to select
acquaintances.

F. Evaluation of Acquaintance Management Algorithm

In this experiment, we study the effectiveness of our ac-
quaintance management algorithm (Algorithm 2). We set up
a simulation environment of 100 nodes. For the convenience
of observation, all nodes have fixed FP rate 0.1 and their FN
rates are uniformly distributed in the range of [0.1, 0.5]. All
nodes update their acquaintance list once a day (tu=1). We
observe several properties: convergence, stability, robustness,
and incentive-compatibility.

1) Convergence: Our first finding about our acquaintance
management algorithm is that HIDSes converge to collaborat-
ing with other HIDSes with similar detection accuracy levels.
We observed through experiments that HIDSes collaborate
with random other nodes in the network in the beginning
(Figure 9). After a longer period of time (200 days), all HID-
Ses collaborate with others with similar detection accuracy, as
shown in Figure 10. Our explanation is that the collaboration
between pairs with high qualification discrepancy is relatively
not stable since our collaboration algorithm is based on mutual
consensus and consensus is hard to reach between those pairs.

Figure 11 plots the average overall cost in the first 365 days
of collaboration for three nodes with FN values 0.1, 0.3, and
0.5 respectively. In the first 10 days, the costs for all nodes
are high. This is because all collaborators are still in probation
period. After day 10, all cost values drop down significantly.
This is because collaborators pass probation period and start
to contribute to intrusion decisions. The cost for high expertise
nodes continues to drop while the cost for low expertise nodes
increases partially after around day 20, and stabilizes after day
50. This is because the acquaintance management algorithm
selects better collaborators to replace the initial random ones.
We can see that the collaboration cost of nodes converges with
time and becomes stable after the initial phase.

2) Stability: Collaboration stability is an important prop-
erty since the collaboration between HIDSes is expected to be
long term. Frequently changing collaborators is costly because
HIDSes need to spend considerable amount of time to learn
about new collaborators. In this experiment, we record the
average time span of all acquaintances from the time they
pass probation period till they are replaced by other acquain-
tances. The result is shown in Figure 12, where the average
collaboration time spans for three selected nodes are shown
with different point shapes. We can see that collaboration
among nodes with similar expertise levels is more stable
than that between nodes with different expertise levels. For
example, nodes with low FN = 0.1 form stable collaboration
connections with other nodes with low FN (around 180 days
in average), while the collaboration with HIDSes with high
FN is short (close to 0 day in average).

3) Incentive-compatibility: Collaboration among HIDSes is
expected to be a long term relationship. Incentive is important
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for the long term sustainability of collaborations since it pro-
vides motivation for peers to contribute [27], [28]. We compare
the average overall cost of all nodes with different FN rates
under three different conditions, namely, no collaboration,
fixed acquaintances collaboration (acquaintance length=8),
and dynamic acquaintance management collaboration. Figure
13 shows the distribution of the converged cost of all nodes.
We can observe that the cost of all HIDSes is much higher
when no collaboration is performed in the network. On the
other hand, collaborating with random fixed acquaintances
can significantly reduce the cost of false decisions, however,
the cost of high expertise nodes and low expertise nodes are
very close. With our dynamic acquaintance management, high
expertise nodes achieve much lower cost than nodes with low
expertise, which reflects an incentive design of the collabo-
ration system. Therefore, the system provides motivation for
nodes to update their knowledge base and behave truthfully
in cooperation.

4) Robustness: Robustness is a desired property of a CIDN
since malicious users may try to attack the collaboration mech-
anism to render it ineffective. Several strategies can be adopted
as we discussed in Section V. We focus on the Betrayal attack
in this experiment. To study the impact from one malicious
node, we set up a collaboration scenario where HIDS0 is
collaborating with a group of other HIDSes with FP = 0.1
and FN = 0.2. Among the group, one HIDS turns to be
dishonest after day 50 and gives false diagnoses. We observe
the FP rate and FN rate of this malicious node perceived by
HIDS0, and the impact on the risk cost of HIDS0 under various
collaborator group sizes. Figure 14 shows the perceived FP
and FN rate of the malicious node during each simulation
day. We can see that the perceived FP and FN increase fast
after day 50. The malicious node is then removed from the
acquaintance list of HIDS0 when its perceived FP and FN are
higher than a predefined threshold. The cost of HIDS0 under
betrayal attack is depicted by Figure 15; we notice that the
betrayal behavior introduces a spike of cost increment under
all group sizes, but the magnitude of increment decreases when
the number of collaborators increases. However, the system
can efficiently learn the malicious behavior and recover to
normal by excluding malicious nodes from the acquaintance
list.

VII. RELATED WORK

Existing CIDNs can be divided into information-based
CIDNs and consultation-based CIDNs. In information-based
CIDNs, intrusion information such as intrusion alerts, intru-
sion traffic samples, firewall logs, and system logs are shared
in the network and aggregated to achieve better network-wide
intrusion decisions. Several information-based CIDNs, such
as [29], [11], [15], and [30], have been proposed in the past
few years. They are especially effective in detecting epidemic
worms or attacks, and most of them require homogeneous
participant IDSes. In contrast, in consultation-based CIDNs,
suspicious file samples or traffic samples are sent to col-
laborators for diagnosis. Diagnosis results (feedback) from
collaborators are then aggregated to help the sender IDS make
intrusion decisions. Examples of such CIDNs include [19],
[20], [16], [31], and [13]. Consultation-based CIDNs may
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Fig. 15. The cost of a HIDS under a betrayal attack.

involve heterogeneous IDSes and are effective in detecting
many intrusion types including worms, malware, port scan-
ning, and vulnerability explorations. The CIDN proposed in
this paper is a consultation-based CIDN. With respect to the
CIDN collaboration topology, many proposals are centralized,
such as [29], [12], and [11]. A centralized CIDN requires
a continuously available central server and it suffers from
the single point of failure problem. A decentralized CIDN
such as [30], [32] can alleviate the workload of the central
server by means of clustering where the cluster heads partially
process and summarize the data they collect, and then forward
it to higher level nodes for processing. In a fully distributed
CIDN [33], [16], [15], [34], all IDSes are equally responsible
for collecting/processing information and therefore is the most
scalable and flexible topology. The CIDN proposed in this
paper is a fully distributed overlay network.

Various approaches have been proposed to evaluate HIDSes.
All use a single trust value to measure whether a HIDS will
provide good feedback about intrusions based on past experi-
ence with this HIDS. For example, Duma et al. [31] introduce
a trust-aware collaboration engine for correlating intrusion
alerts. Their trust management scheme uses each peer’s past
experience to predict others’ trustworthiness. Our previous
work [19], [20] uses Dirichlet distributions to model peer trust,
but it does not investigate the conditional detection accuracy
such as false positives and false negatives. In this work, we
use both false positive and true positive rates to represent the
detection accuracy of a HIDS based on a Bayesian learning
approach. The methods for aggregating feedback provided by
Duma et al. [31] and our previous work [19], [20] are also
simplistic. They both use a weighted average approach to ag-
gregate feedback. Another broadly accepted decision model in
CIDNs is the threshold-based, which is used in AVCloud [13].
In this model, when the total number of collaborators raising
alarms exceeds a fixed threshold, an alarm will be raised. In
this paper, we apply the well established Bayes’ theorem for
feedback aggregation which achieves better performance. Our
previous work [19], [20] focuses on the trust evaluation with
a simple threshold-based acquaintance selection. This work
focuses on the optimal collaboration decision and optimal
acquaintance selection.

Most previous approaches set a fixed length of the acquain-
tance list, such as in [17]. Others use a trust threshold to
filter out less honest acquaintances [18], [19]. The advantage
of the threshold based decision is its simplicity and ease
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of implementation. However, it is only effective in a static
environment where collaborators do not change, such as that
presented in [13]. In a dynamic environment, nodes join and
leave the network and the acquaintance list changes with
time. Therefore, finding an optimal threshold is a difficult
task. Our Bayesian decision model is efficient and flexible.
It can be used in both static and dynamic collaboration
environments. Equipped with this Bayesian decision model,
our acquaintance selection algorithm can find the smallest
set of best acquaintances that can maximize the accuracy
of intrusion detection. Based on this acquaintance selection
algorithm, our acquaintance management method uses a pro-
bation list to explore potential candidates for acquaintances
and balances the cost of exploration and the speed of updating
the acquaintance list.

VIII. CONCLUSION AND FUTURE WORK

We proposed a statistical model to evaluate the tradeoff be-
tween the maintenance cost and intrusion cost, and an effective
acquaintance management method to minimize the overall cost
for each HIDS in a CIDN. Specifically, we adopted a Bayesian
learning approach to evaluate the accuracy of each HIDS in
terms of its false positive and true positive rates in detecting
intrusions. The Bayes’ theorem is applied for the aggregation
of feedback provided by the collaborating HIDSes. Our ac-
quaintance management explores a list of candidate HIDSes
and selects acquaintances using an acquaintance selection
algorithm. This algorithm is based on a greedy approach to
find the smallest number of best acquaintances and minimize
the cost of false intrusion decisions and maintenance. The
acquaintances list is updated periodically by introducing new
candidates which pass the probation period.

Through a simulated CIDN environment, we evaluated
our Bayesian decision model against threshold-based decision
models, and acquaintance selection algorithm against a brute
force approach. Compared to the threshold-based model, our
Bayesian decision model performs better in terms of cost of
false decisions. Compared to the brute force approach, our
algorithm achieves similar performance but requires much
less computation time. Our acquaintance management is also
shown to achieve the desirable properties of convergence,
stability, robustness, and incentive-compatibility.

As future work, we intend to seek a theoretical method
to determine the optimal length of the acquaintance list
for a HIDS based on the detection accuracy of a set of
candidate acquaintances. We will also investigate other more
sophisticated attack models on the collaboration mechanism
and integrate corresponding defense techniques. Robustness of
the acquaintance management system is particularly critical if
extended to support HIDS peer recommendations. In this case,
malicious HIDSes may provide untruthful recommendations
about other HIDSes [35], [18], [36], or worse collide to
collaboratively bring the system down.
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