
An Analytical Model for Estimating Cloud Resources
of Elastic Services

Khaled Salah1 • Khalid Elbadawi2 • Raouf Boutaba3,4

Received: 10 November 2014 / Accepted: 3 August 2015

� Springer Science+Business Media New York 2015

Abstract In the cloud, ensuring proper elasticity for hosted applications and

services is a challenging problem and far from being solved. To achieve proper

elasticity, the minimal number of cloud resources that are needed to satisfy a par-

ticular service level objective (SLO) requirement has to be determined. In this

paper, we present an analytical model based on Markov chains to predict the

number of cloud instances or virtual machines (VMs) needed to satisfy a given SLO

performance requirement such as response time, throughput, or request loss prob-

ability. For the estimation of these SLO performance metrics, our analytical model

takes the offered workload, the number of VM instances as an input, and the

capacity of each VM instance. The correctness of the model has been verified using

discrete-event simulation. Our model has also been validated using experimental

measurements conducted on the Amazon Web Services cloud platform.

Keywords Cloud computing � Capacity engineering � Resource management �
Auto-scaling � Elasticity � Performance modeling and analysis

& Khaled Salah

khaled.salah@kustar.ac.ae

Khalid Elbadawi

badawi@cdm.depaul.edu

Raouf Boutaba

rboutaba@cs.uwaterloo.ca

1 Electrical and Computer Engineering Department, Khalifa University of Science, Technology

and Research (KUSTAR), Abu Dhabi, UAE

2 School of Computing, DePaul University, Chicago, IL, USA

3 David R. Cheriton School of CS, University of Waterloo, Waterloo, Canada

4 Division of IT Convergence Engineering, POSTECH, Pohang, Korea

123

J Netw Syst Manage

DOI 10.1007/s10922-015-9352-x

http://crossmark.crossref.org/dialog/?doi=10.1007/s10922-015-9352-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10922-015-9352-x&domain=pdf

1 Introduction

Elasticity is a key characteristic of the cloud computing paradigm. Elasticity is

typically defined as the ability to dynamically scale (or auto-scale) cloud IT

resources as required and in accordance to the presented workload demand. We

define ‘‘Elastic Services’’ as those cloud-hosted services or applications with

elasticity property. For these elastic services, the cloud compute resources allocated

to them need to be dynamically scaled so that specific service level objective (SLO)

performance requirements can be satisfied. The SLO performance requirements can

include response time, throughput and service request probability loss. Examples of

elastic services are web services, email services, query and search engines, database

services, financial services, multimedia systems, and many others.

In a typical cloud datacenter, as depicted in Fig. 1, elasticity for cloud-hosted

applications or services is realized using a Load Balancer (LB) node. Other than

load-balancing functionality, the LB node is also responsible for managing and

automating the provisioning and de-provisioning of the underlying cloud resources.

The cloud resources are typically compute (or worker) VMs that may require access

to storage or database servers. The LB, which fronts the worker VMs, is responsible

for communicating continuously with the provisioned worker VMs to determine the

availability of each VM to accept new requests. The LB attempts to dispatch

requests equally among all VMs [1, 2]. In addition, the LB monitors the presented

workload and the utilization state of each worker VM, and accordingly, it decides to

provision (scale up) or de-provision (scale down) VM instances in order to achieve

proper elasticity by which the minimal worker VMS are allocated to satisfy the SLO

requirements. It is worth mentioning that there are different approaches to conduct

cloud monitoring [3]. A complete and comprehensive survey on existing cloud

monitoring mechanisms, approaches, and the available commercial and open-source

platforms and services can be found in [3]. Also the authors in [3] have surveyed

Database

A
gr
ou

p
of

C
om

pu
te

N
od

es

Client Access

Internet

Cloud Datacenter

Load
Balancer

(LB)

Fig. 1 A typical cloud deployment architecture of an elastic service

J Netw Syst Manage

123

many types of monitoring implementations for VM’s CPU and physical memory,

network workloads, and cloud-based middleware and apps.

The responsibility of implementing elasticity depends on the cloud service model

(IaaS or PaaS) offered by the cloud provider. For an Infrastructure-as-a-Service

(IaaS) cloud model such as Amazon Web Services (AWS) [4] and Google Compute

Engine (GCE) [5], the implementation of elasticity is the responsibility of the cloud

service deployer. However, the implementation is transparent to the cloud service

deployer when hosting the service on a Platform-as-a-Service (PaaS) or Software-

as-a-Service (SaaS) cloud as Google App Engine (GAE) [6]. In the latter case, the

elasticity mechanism and implementation are the responsibility of the PaaS cloud

provider. For both hosting service platforms, an effective elasticity mechanism has

to accurately predict the minimum required cloud resources to satisfy a given SLO

requirement based on the current workload and the capacity of each cloud resource.

Allocating more cloud resources than required to satisfy the SLO will result in over-

provisioning and higher costs to the service owner. On the other hand, allocating

fewer resources than required will lead to under-provisioning whereby the SLO

requirements are violated. Therefore, any elasticity algorithm must be able to

properly estimate the needed cloud resources while taking into account the current

workload and the SLO requirements.

It is worth noting that over provisioning of cloud resources or following a trial

and error approach for determining the needed number of cloud resources would

lead to higher costs and a prolonged period of SLO violations until the minimal

number of cloud resources are determined [7]. Under a heavy workload that entails

more cloud resources to be provisioned, a group of VMs may need to be provisioned

to satisfy the violated SLO (as in the Amazon AWS Auto Scale [1, 2]). If the size of

this group is not accurately and promptly predicted, this may lead to prolonging the

period of SLO violations. This is primarily due to the time it takes to provision and

instantiate new VM instances. Such provisioning time is quite significant and it may

take between 30 and 96 s [8, 9]. Therefore, accurate and prompt prediction of the

size and the number of compute instances for elastic services become a critical

performance and resource management issue. A review of the techniques for auto-

scaling cloud-based applications was conducted in [7]. In general, the surveyed

techniques address the scalability implementation for different types of applications

and services that can be hosted in a cloud computing environment.

In this paper, we present an analytical model that promptly estimates (based on

derived mathematical formulas) the minimum required cloud resources to satisfy a

given SLO performance criterion for an elastic service. Specifically, for a known or

measured processing capacity of VM instances and a measured incoming workload

(in terms of the arrival request rate), and by using derived formulas, the model can

immediately estimate the mean SLO key performance criteria (such as the response

time) for a given number of VM instances. The service response time is a common

SLO performance criterion [10, 11]. We refer to the service response time as the

sojourn time which includes processing/execution time and queueing or waiting

time at the datacenter. This sojourn time is part of the end-to-end response time that

can include other link and node network delays [12, 13].

J Netw Syst Manage

123

Prior related work reported in [12–21] employs general queueing models (as

those of M/M/1, M/G/1, M/M/m, M/G/m/K, or Erlang formulas) to capture and

analyze the behavior of elastic services. None of these models have focused on

determining the number of VM instances required to meet SLO performance criteria

for cloud-based services. Also, these models fall short of capturing the real behavior

of the elastic services. Specifically, all of these models ignore the role of the LB. As

stated earlier, the LB plays an important role in dispatching, monitoring, and

tracking the availability of compute (or worker) instances at the cloud datacenter.

This processing time at the LB can be significant. Hence, any analytical model

should account for the role of LB in order to accurately model behavior and

performance.

This paper is a major extension of our short 5-page preliminary version that

appeared in [22]. In this extended version, we have included a discussion on the

applicability and usefulness of our analytical model. We also have included detailed

mathematical derivations for our analytical model along with a complete algorithm

for deriving additional key performance formulas and measures. In this paper, a new

section has been added on modeling and analyzing the scalability of the LB that can

be, if ignored, a major performance bottleneck for elastic services. Another section

was added on validating our analytical model and formulas. The validation was

conducted using measurements of an experimental testbed deployed on the AWS

cloud. More importantly, this paper includes numerical results of real world

practical scenarios of cloud elastic services that include web service, Netflix video

streaming, and the AWS cloud. The section on numerical results includes new

figures and considerable discussion and interpretations on cloud resource estimation

and capacity engineering aspects related to achieving proper elasticity for cloud

services.

1.1 Usefulness and Applicability

Our proposed analytical model is general and can be applied to describe and capture

the behavior of other similarly-behaving systems as those of elastic applications or

services. First, the model can be used in auto-scaling or an elasticity algorithm in

which the capacity and number of compute (or worker) instances to be provisioned

are determined based on the required SLO requirement and the measured workload.

Currently in Amazon’s AWS, auto scaling is based on setting lower and upper

thresholds for the overall CPU utilization. We show in Sect. 4 that CPU utilization

may not be an adequate measure for auto scaling. In addition, CPU utilization can

be misleading as it could be affected by running agents, tasks or processes that are

not related to the application workload. Examples of these tasks may include

backup, monitoring, instance management, and migration. In [23], it has been

shown that CPU utilization is a useless metric especially in a virtualized

environment. Second, the techniques employed in our model can be used as a

basis to model and predict the number of Hadoop cluster nodes (of a certain size and

capacity) required to schedule and execute a MapReduce job. Third, our model can

be used to compute the expected delay for a multi-tier service in which an LB and

multiple compute nodes are involved. The aggregated delay at each tier can be used

J Netw Syst Manage

123

to compute the end-to-end response time. Fourth, the model can compute the

required cloud instances and estimate the service response time and the required

network bandwidth when deploying a Virtual Data Center (VDC) and an Amazon

EC2 Fleet in which multiple VM instances (or EC2) are provisioned based on the

given SLO requirements. Fifth, the model can be used in CCA (Cloud Call

Admission) to accept or deny user requests to provision a single or multiple VM

instances. As VM instances continuously get provisioned and de-provisioned (due

to auto-scaling, migration, and termination), the mean lifetime for an instance can

be estimated. Our model can then be used to determine key performance measures

for the CCA to grant or deny a request. The measures may include cloud resource

utilization, network bandwidth, overall service time, throughput, and blocking

probability.

The rest of the paper is organized as follows. Section 2 describes our analytical

model to capture the behavior of an elastic service hosted on a cloud. The section

derives formulas that can be used in predicting key performance measures that can

be used in achieving proper elasticity in terms of minimal cloud resources that

satisfy SLO requirements. Section 3 discusses simulation and an experimental

testbed used to verify and validate our analytical model. Section 4 presents

numerical examples for realistic scenarios in which elastic cloud services can be

deployed. It also compares analysis results with simulation and experimental

measurements. Finally, Sect. 5 concludes the paper and outlines future work.

2 Markovian Analytical Model

The handling of an incoming request for an elastic service hosted on a cloud is

illustrated in Fig. 2. As shown, an arriving request gets first queued in a finite buffer

and then dequeued by the LB with a mean service time 1/r. The LB will dequeue the

request for processing if and only if one of the compute/worker instances is readily

available to handle a new request. This could happen if the compute instance has

Fig. 2 Finite queueing system
model with a LB and m worker
nodes

J Netw Syst Manage

123

been newly launched or it has just finished servicing a request. The compute

instance has to notify the LB upon the completion of a request. We assume that each

compute instance can service and process dispatched requests from the LB with a

mean service time 1/l. We assume that the LB will distribute the load evenly (in a

round-robin fashion) among all m provisioned compute instances. In this way, if we

assume the incoming mean request rate is k, the portion of the incoming rate to each

individual compute instance will be k/m. The mean departure rate of all instances is

denoted by c, which also represents the overall throughput of the system. For

estimating the average workload k, the reader can refer to prior work on estimating

an instantaneous dynamic workload published in [23–26].

In order to approximately model the behavior and performance of the above

system, we assume that incoming requests follow a Poisson arrival k, and all of the

service times are independent and exponentially distributed with means of 1/r and 1/

l. Requests are serviced according to First Come First Served (FCFS) discipline. In

addition, we assume the LB only dispatches the request to the worker node only if the

worker node has finished the processing of a previous request. This means the worker

node has no queue. Therefore, no queueing delay is incurred at the worker node.

2.1 Limitations

Our analytical model assumes the request arrivals are Poisson, and the service times

are all exponentially distributed. It was shown that arrival of HTTP requests for

documents under a heavy load closely follow the Poisson process [27]. However, in

other cases, the arrival rate of Web or XML requests does not always follow a

Poisson process but is bursty [28–30]. Also in reality, service times are not

necessarily always exponential. An analytical solution becomes intractable when

considering bursty traffic and non-Poisson arrivals, and when also considering

general service times. On the other hand, modeling under such assumptions has

been extensively used in the literature and can provide adequate approximation of

real systems [12–18, 27, 30–33]. Also in Sect. 4.3, we demonstrate that analytical

results are in close agreement with experimental results. We would like to state that

our model presented in this paper does not capture the behavior of all types of

cloud-based applications and services. The analytical model and the derived

formulas and algorithms can be applied for cloud-based elastic services that: (1)

exhibit the dynamism and behavior exhibited in Fig. 2, and (2) follow the cloud

deployment architecture exhibited in Fig. 1. Examples of these elastic services may

include web service, email service, query and search engines, multimedia streaming

services, and many others. It is also to be noted that our model is specifically

designed for two-tier applications and services. However, our model can still be

used to approximately study three-tier applications by combining the service of the

second and third tiers into one tier of service. For this, we have to assume a linear

and homogenous scaling for the second and third tier resources. Such assumptions

may not be true for all three-tier applications and how they scale. This is a subject

that warrants further study and investigation.

Our analytical model uses the embedded Markov chain to represent the behavior of

the queueing system, shown in Fig. 2, with a state space S = {(k, n), 0 B

J Netw Syst Manage

123

k B K, n 2 {1, 2}}, where k denotes the number of requests in the system and n denotes

the type of processing taking place by either the LB or one of the compute instances. The

queueing system has a buffer size of K - m. State (0, 0) represents the special case

when the system is empty. States (k, 1) represent the states where the request is being

handled by the LB. States (k, 2) represent the states where the request is being handled

by one of the compute instances. The rate transition diagram is shown in Fig. 3.

Let qk,n be the steady-state probabilities at state (k, n). A system of difference

equations can be written as follows. At states (0, 0), (1, 1), and (1, 2), we have

� kq0;0 þ lq1;2 ¼ 0;

� kþ lð Þq1;2 þ rq1;1 ¼ 0;

and

� kþ rð Þq1;1 þ kq0;0 þ 2lq2;2 ¼ 0;

respectively.

Therefore, the probabilities of q1;2, q1;1, and q2;2 can be expressed as follows in

terms of q0;0

q1;2 ¼
k
l
q0;0;

q1;1 ¼
kþ l
r

� �
k
l

� �
q0;0; and

q2;2 ¼
kþ r

2l

� �
q1;1 �

k
2l

� �
q0;0:

ð1Þ

At each state (k, 1), the difference equation is expressed as

�ðkþ rÞqk;1 þ kqk�1;1 þ ðk þ 1Þlqkþ1;2 ¼ 0; 2� k�m� 1

�ðkþ rÞqk;1 þ kqk�1;1 þ mlqkþ1;2 ¼ 0; k�m
ð2Þ

At each state (k, 2), the difference equation is expressed as

�ðkþ klÞqk;2 þ rqk;1 þ kqk�1;2 ¼ 0; 2� k�m� 1

�ðkþ mlÞqk;2 þ rqk;1 þ kqk�1;2 ¼ 0; k�m
ð3Þ

Equation (3) can be rewritten as

Fig. 3 State transition diagram to capture handling requests for elastic services

J Netw Syst Manage

123

qk;1 ¼

kþ kl
r

� �
qk;2 �

k
r

� �
qk�1;2 2� k�m� 1

kþ ml
r

� �
qk;2 �

k
r

� �
qk�1;2 k�m

8>><
>>:

ð4Þ

Equation (4) can be rewritten as

qk;2 ¼

kþ r

kl

� �
qk�1;1 �

k
kl

� �
qk�2;1 3� k�m� 1

kþ r

ml

� �
qk�1;1 �

k
ml

� �
qk�2;1 k�m

8>><
>>:

ð5Þ

The boundary probabilities at states (K, 1) and (K, 0) are as follows

�rqK;1 þ kqK�1;1 ¼ 0;

and

�mlqK;2 þ kqK�1;2 þ rqK;1 ¼ 0;

respectively.

Therefore,

qK;1 ¼
k
r
qK�1;1

qK;2 ¼
k
ml

qK�1;2 þ qK�1;1

� � and, ð6Þ

Using the normalization condition, q0,0 can be determined as follows:

q0;0 þ
XK
k¼1

qk;1 þ qk;2 ¼ 1

Dividing both sides by q0,0, we get

p0 ¼ q0;0 ¼
1

1þ
PK

k¼1
qk;1
q0;0

þ qk;2
q0;0

� � ð7Þ

Note that q0,0 denotes the probability that the system is empty, i.e., p0.

Equation (7) enables us to compute q0,0 by first computing the terms qk,1/q0,0 and

qk,2/q0,0, which requires only k, l, r, m, K, N. Obtaining q0,0 can then be used to

find all other state probabilities {qk,n; 1 B k B K, n = 1, 2}.

Algorithm 1 shows how we can recursively obtain all state probabilities using

Eqs. (1–7). The computation of Algorithm 1 is optimized by first computing loop

invariants (as those expressions involve k, l, r and m) as shown in Line 4. Then, the

algorithm computes the terms qk,1/q0,0 and qk,2/q0,0 recursively, as shown in Lines

5–21. In Line 22, the algorithm uses Eq. (7) to compute q0,0. At the end, the

J Netw Syst Manage

123

algorithm updates the other state probabilities by multiplying the matrix Q with the

scalar value q0,0 as shown in Line 23.

Consequently, key features and performance measures can be derived as follows.

First, the mean system throughput c is basically the departure rate, or equivalently

the rate at which the requests are being processed successfully by the compute

instances, that is

c ¼ l
XK
k¼1

qk;2: ð8Þ

The mean throughput c can be used in engineering the mean network bandwidth

required for both internal and external network communication. Given the network

bandwidth required for each request, the total capacity can be estimated and,

J Netw Syst Manage

123

accordingly, the business cost in terms of bandwidth can be determined. For a cloud

provider, the estimation of throughput c can also be used in computing the profit, if

the charges for each request are known.

The probability Ploss is the loss or blocking probability. Ploss can be expressed as

the probability of being in either state (K, 1) or state (K, 2), that is

Ploss ¼ qK;1 þ qK;2: ð9Þ

The loss rate of requests is given by kPloss requests per time unit. This can be

useful in estimating and quantifying business loss as requests are being served.

The probability of queueing PQueueing (or the probability of all instances

including the LB are busy) can be expressed as

PQueueing ¼ Pð�m requests in systemÞ ¼
XK

k¼mþ1

qk;1 þ qk;2:

The mean number of requests E[n] in the system can be expressed as

E n½ � ¼
XK

k¼0;n¼1;2

kqk;n ¼
XK

k¼1
k qk;1 þ qk;2
� �

:

At the cloud datacenter, the metric E[n] can be useful in estimating the required

network, database, or storage resources if these required resources for each request

are known a priori.

Using Little’s formula, the mean time spent in the system by a request succeeding

in entering the queue can be expressed as

W ¼ E½n�
c

¼ 1

c

XK�1

k¼0

k qk;1 þ qk;2
� �

þ K

c
qK;1 þ qK;2
� �

: ð10Þ

This metric W is the mean service time or sojourn time. It is this metric that the

SLO has to satisfy and from it the number of VM instances can be determined, as

will be demonstrated in Sect. 4.

This gives the mean time spent waiting in the queue Wq as

Wq ¼ W � 1=r � 1=l ¼ 1

c

XK�1

k¼0

k qk;1 þ qk;2
� �

þ K

c
qK;1 þ qK;2
� �

� 1=r � 1=l: ð11Þ

We can also derive the mean number of requests in the queue E[nq] as

E nq
� 	

¼
XK

k¼mþ1;n¼1;2

kqk;n ¼
XK

k¼mþ1

k qk;1 þ qk;2
� �

: ð12Þ

Using Little’s result, Wq can also be derived as

J Netw Syst Manage

123

Wq ¼
E½nq�
c

¼ 1

c

XK�1

k¼mþ1

k qk;1 þ qk;2
� �

þ K

c
qK;1 þ qK;2
� �

: ð13Þ

The CPU utilization of each VM instance can be expressed as follows

UVM ¼ c
ml

; ð14Þ

where c is expressed in Eq. (8). Also the CPU utilization of the LB can be expressed

as

ULB ¼ c
r
: ð15Þ

The CPU utilizations of UVM and ULB reflect the utilization level of compute

resources, and it is a measure currently being used in Amazon AWS auto scaling

[2]. A mean low level of utilization over a long period of time indicates poor

utilization of resources, resulting in a high cost and inefficient system.

2.2 Scaling the Load Balancer (LB)

Our model estimates key performance metrics regardless of how small or large the

processing capacity of the LB when compared to the processing capacity of all

servers. That is, the derived equations are valid under the conditions r C ml and

r\ml. As an intuitive design principle, the LB must not be a performance

bottleneck. Specifically, the service time for handling the request at the LB should

not be the dominating factor in estimating the mean service time or other

performance measures. Rather, the overall performance should be dominated by the

processing capacity and the number of provisioned VM instances. The LB service

time should be kept at a minimum, and it should have negligible impact on the

overall performance of the system. To accomplish this, the LB processing capacity

r should be always greater than the processing capacity of all servers ml. This
means the condition r C ml must always be satisfied.

However, considering the dynamism of the system due to the provisioning of

more VM instances as the incoming load k increases, the cloud may be subject to

the following two situations. The first situation arises when the departure rate of the

LB (i.e., r
PK

i¼1 qi;1) is approaching the processing capacity of all servers ml and no

more VM instances can be provisioned. The second situation arises when the

incoming load k is approaching the processing capacity r of the LB. In these

situations, the LB has to be scaled. Two questions arise when scaling the LB. First,

what type of scaling must be done to increase the processing capacity of the LB?

Second, when should such scaling should be triggered?

Two options exist for scaling the LB (and also compute VMs) processing

capacity: vertical scaling and horizontal scaling. The former can be accomplished

by adding more computer power (i.e., CPU power or CPU cores), physical RAM,

Cache, hard disk, and network bandwidth. The latter can be accomplished by

provisioning and launching new LB instances. In a cloud environment, scaling up is

J Netw Syst Manage

123

not a viable option. Most common operating systems do not support on-the-fly

scaling up without rebooting [34], and the VM startup time can be significant and in

the order of 30–100 s [8, 9]. Clearly, this will cause a major disruption in the

operation of the elastic service. Therefore, horizontal scaling becomes the more

practical option and can be carried out without noticeable disruption, especially if

the instantiation of the new LB instances is triggered early, as it takes at least 30 s to

instantiate a replica [8]. More importantly, the performance of both types of scaling

is similar. Based on queueing theory performance results, a queueing system with a

server that has a service rate ml will give a comparable performance to the same

queueing system but with m servers; each having a service rate l [35–37]. Amazon

AWS cloud already adopts a similar strategy using ‘‘Elastic Load Balancing’’ by

providing replicated VM instances [2].

The triggering condition to scale out the LB is a key design issue. Early

provisioning may lead to waste in cloud resources and poor utilization. As stated

earlier, our aim is to ensure that the LB has negligible impact on the overall

performance, and thereby ensures that the overall performance is dominated by the

provisioned VM instances. To set the proper triggering condition for scaling out the

LB, we apply the principle of the queueing theory to study the performance curves

(e.g., throughput and response time) with respect to incoming request intensity

q = k/l.
Figure 4 shows the performance curves of an M/M/1/K queueing system with

respect to request intensity q. As shown in the figure (and this can be shown for

general cases), the LB performance, specifically in terms of service time, starts to be

noticeably affected when the offered load q is greater than 0.70, but its performance

in terms of throughput continues to increase. There is clearly a tradeoff between

those performance measures: throughput, service time, CPU utilization and request

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
0

0.1

0.2

0.3

0.4

0.5

ρ

S
er

vi
ce

 T
im

e
(s

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
0

10

20

30

40

50

60

70

80

90

100

ρ

C
P

U
 U

til
iz

at
io

n
(%

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
0

20

40

60

80

100

120

140

160

180

200

ρ

T
hr

ou
gh

pu
t (

R
eq

/s
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
0

5

10

15

20

25

30

35

ρ

R
eq

ue
st

 L
os

s
(%

)

Fig. 4 Performance curves of M/M/1/K queueing system in relation to request intensity q

J Netw Syst Manage

123

loss. As suggested by Kleinrock [39], we can define a function f(k) = (c 9 U)/

W that identifies the operating points where the LB delivers its best performance in

terms of throughput (c), CPU utilization (U), and delay (W), collectively. The

function f allows us to study the performance of the LB using a single homogeneous

performance measure.

Now, let f(k) be a continuous and non-decreasing function. Then the functionfis

maximized at k ¼ k� when df=dkjk¼k�¼ 0 and d2f=dk2

k¼k�

\0. Considering M/M/

1 as we are interested only when 0 B q\ 1, the function f can be written as:

f ¼ k2

l
ðl� kÞ:

Then,

df

dk
¼ 2k� 3

k2

l
:

Thus, the critical points are k = 0(rejected) and k = 2/(3l). Consequently, the
LB delivers its best performance when q = 0.67 after which its performance

degrades. It degrades dramatically when q[= 0.75. Therefore, as an acceptable

engineering practice, a triggering condition to scale out the LB should take place

when q & 0.70, which corresponds to a CPU utilization of 70 %. For implemen-

tation, measuring the overall CPU utilization over a reasonably adequate time

period (e.g., 10–15 min as recommended by Amazon AWS [35]) may be used as a

trigger. However, and as stated in Sect. 1, measurement of CPU utilization can be

often misleading and such a practice should not be recommended, as the CPU

utilization is impacted by many tasks and processes not related to the elastic service

workload. Instead, measurement of q should be used [23].

Figure 5 illustrates the scaling out of the LB from one LB instance to two

instances. After scaling, each LB will have its own queue and IP address, with each

LB responsible for balancing the load among its group of m compute VM instances.

Using our analytical model, the proper size of the group m can be determined based

on the effective incoming load k and a given SLO criterion as that of the service

Fig. 5 Scaling out the LB
instance to more than one
replica

J Netw Syst Manage

123

response time. The figure shows that incoming request flow for the elastic service

should be shaped (or limited) so that a fraction of the total incoming arrival rate k
should not exceed qk, or 0.70k if we set q = 0.70. The rest of the traffic flow

(1 - q)k should be directed to the newly provisioned and instantiated LB replica,

i.e. LB2. The shaping or distribution of the traffic request flow can be done by the

DNS server or Elasticity Controller [34, 38], or possibly via a traffic shaper

implemented at the Internet gateway of the datacenter.

3 Verification and Validation

To verify the correctness of our analytical model, we have developed a discrete-event

simulation to capture the behavior of an elastic service hosted in the cloud that

comprises a finite queueing system with an LB and multiple servers. To verify the

correctness of our analysis, we adopted the same assumptions as those of our analysis.

The simulationwas written in C language, and the code closely and carefully followed

the guidelines given in [34]. We used the PMMLCG as our random number generator

[40]. The simulation was automated to produce independent replications with

different initial seeds that were ten million apart. During the simulation run, we

checked for overlapping in the random number streams and ascertained that such a

condition did not exist. The simulation was terminated when achieving a precision of

no more than 10 % of the mean with a confidence of 95 %. We employed and

implemented the replication/deletion approach for means discussed in [40]. We

computed the length of the initial transient period using theMarginal Confidence Rule

(MCR) heuristic developed by White [41]. Each replication run lasts for five times of

the length the initial transient period.

To validate our analytical model, we also compared our analysis results to real

world experimental measurements. Figure 6 illustrates the experimental setup and

testbed. We used the AWS cloud platform to launch Amazon EC2 VM instances

Fig. 6 Experimental setup deployed on AWS Cloud

J Netw Syst Manage

123

[4]. The experiment comprised different sizes of EC2 VMs. We selected the size of

EC2 VMs that are optimized for our processing and network connectivity needs. We

used one large size EC2 VM for generating an HTTP request traffic, one large size

EC2 VM for load balancing, and a medium size EC2 VM (namely ‘‘m1.medium’’)

for servicing the HTTP requests. These types of VMs (when compared to micro and

small VMs) offer high networking performance in terms of inter-VM latencies,

lower network jitter and significantly higher packet per second performance. In the

AWS cloud, a large size EC2 VM has two virtual CPUs (vCPUs) with 7.5 GB

RAM, and a medium sized EC2 VM has one vCPU and 3.7 GB RAM. In AWS

terminology, one vCPU is a hardware hyperthread from a 2.6 GHz Intel Xeon E5-

2670 processor [42]. We ran Ubuntu Linux Server 13.10 as the underlying operating

system for all of our instances. We used the popular Apache JMeter [43] to generate

synthetic HTTP traffic which was first directed to an HAProxy load balancer [45]

that was readily available at the AWS [46]. In addition to the basic features that

come with JMeter by default, we added the standard set of plugins [44] to create

aggregate summary reports. The HAProxy was configured to distribute the HTTP

requests evenly in a round robin fashion among the available medium sized VM

instances to process the HTTP requests. All of these VMs including the JMeter and

HAProxy were hosted within the same AWS VPC (Virtual Private Cloud) [47].

With Amazon VPC, all hosts within the VPC are logically isolated. As an

alternative to using Appache JMeter, the open-source D-ITG traffic generator [48,

49] can be used to generate realistic HTTP traffic with parameter values set as

described in [50, 51].

Apache JMeter was configured to generate HTTP requests simultaneously, and

performance measurements were taken after a period of 15 min. For our

measurement, we measured the following performance metrics: response time,

throughput, and CPU utilization. The average, minimum, and maximum measure-

ments for response time and throughput were given by the JMeter aggregate

summary report at the end of the run. As for CPU utilization, we used sar Linux

utility and Perl scripting language to collect and aggregate the CPU utilization

readings of the running VMs. The CPU utilization readings were taken in the stable

period; namely from 8 to 12 min.

We measured the average processing time 1/r for the HAProxy load balancer and

the average processing time 1/l for processing HTTP requests. In general and in

reality, the measurement techniques laid out here can be used to gauge the

processing capacity of any LB and VM instances. For measuring 1/r, we generated

HTTP traffic from JMeter to HAProxy and back to JMeter. For this, we had to run

JMeter and Apache Web Server in the same large sized EC2 VM instance.

Similarly, for measuring 1/l, we generated traffic directly from the JMeter large

instance to the EC2 medium size VM instance. We set up the Web server to return a

web page of a size of 580 bytes when receiving an HTTP request from JMeter. The

page size was tuned until we achieved close to 100 % CPU utilization when the

instance receives 100 Req/s (Requests per second) which is our target capacity of

our medium sized VM instance. Intuitively, this will give us around 10 ms for the

average service time 1/l when servicing HTTP requests at a low rate. To verify this

further, we measured the average service time of both 1/r and 1/l by computing the

J Netw Syst Manage

123

JMeter response time average when sending an HTTP traffic rate k of 10 Req/s. We

found that the mean value for 1/r and 1/l was approximately 0.1 and 10 ms,

respectively. Also, for our experiments, we have chosen the buffer size K = 300

which is the default size for the Linux network adapter’s receiving buffer according

to the header definition in the Linux kernel code header file/net/drivers/tg3.h

4 Numerical Results

In this section, we report numerical results obtained by using our analytical model,

simulation, and experimental measurements. The analytical curves were obtained by

MATLAB implementation of the equations derived from the analytical models. The

simulation results were obtained using the discrete-event simulation described in

Sect. 3. Likewise, the experimental measurements were obtained from the testbed

described in Sect. 3. As depicted in Fig. 7, the results obtained from the simulation

are represented by the red circles, whereas the analysis results are represented by

solid blue curves. The figure shows that both simulation and analysis results are in

close agreement, and thus imply that our analytical model is correct. In addition,

Table 1 shows that our real experimental measurements are also in adequate

agreement with analytical results, thereby validating the analytical model.

1400 1500 1600 1700 1800 1900 2000
10

15

20

25

30

35

40

45

50

55

60

Offered Load (Req/s)

M
ea

n
S

er
vi

ce
 R

es
po

ns
e

Ti
m

e
(m

s)

VM Instances = 20
VM Instances = 19
VM Instances = 18
VM Instances = 17
Simulation Results

1400 1500 1600 1700 1800 1900 2000
180

190

200

210

220

230

240

250

260

Offered Load (Req/s)

E
gr

es
s

In
te

rn
et

 B
an

dw
id

th
 (M

b/
s)

VM Instances = 20
VM Instances = 19
VM Instances = 18
VM Instances = 17
Simulation Results

(a) (b)

1400 1500 1600 1700 1800 1900 2000
0

2

4

6

8

10

12

14

16

18

Offered Load (Req/s)

W
eb

 R
eq

ue
st

 L
os

s
(%

) VM Instances = 20
VM Instances = 19
VM Instances = 18
VM Instances = 17
Simulation Results

1400 1500 1600 1700 1800 1900 2000
70

75

80

85

90

95

100

Offered Load (Req/s)

C
P

U
 U

til
iz

at
io

n
(%

)

VM Instances = 20
VM Instances = 19
VM Instances = 18
VM Instances = 17
Simulation Results

(c) (d)

Fig. 7 Web performance curves using multiple instances

J Netw Syst Manage

123

T
a
b
le

1
C
o
m
p
ar
is
o
n
o
f
ex
p
er
im

en
ta
l
re
su
lt
s
to

an
al
y
si
s

R
es
p
o
n
se

ti
m
e
(m

s)
T
h
ro
u
g
h
p
u
t
(R
eq
/s
)

C
P
U

u
ti
li
za
ti
o
n
(%

)

A
n
al
y
si
s

E
x
p
er
im

en
t

A
n
al
y
si
s

E
x
p
er
im

en
t

A
n
al
y
si
s

E
x
p
er
im

en
t

A
v
g

A
v
g

M
in

M
ax

A
v
g

A
v
g

M
in

M
ax

A
v
g

A
v
g

M
in

M
ax

5
V
M
s
at

a
ra
te

o
f
4
0
0
R
eq
/s

1
5
.5
4

1
7
.8

1
2
.2
3

2
1
.6
1

4
0
0

3
7
9

3
6
0

3
9
2

8
0

7
3

5
4

8
7

1
0
V
M
s
a
ra
te

o
f
8
0
0
R
eq
/s

1
2
.0
5

1
4
.2
9

1
0
.1
1

1
6
.2
3

8
0
0

7
6
8

7
5
1

7
8
8

8
0

7
6

5
6

8
9

2
0
V
M
s
at

a
ra
te

o
f
1
5
0
0
R
eq
/s

1
0
.3

1
4
.8
8

9
.7
1

1
7
.7
4

1
5
0
0

1
4
6
1

1
3
5
7

1
4
8
8

7
5

6
6

5
1

8
4

3
0
V
M
s
at

a
ra
te

o
f
2
5
0
0
R
eq
/s

1
0
.5

1
5
.0
1

7
.1
2

1
8
.0
2

2
5
0
0

2
3
9
1

2
2
0
2

2
6
0
1

8
3

7
5

5
7

9
1

J Netw Syst Manage

123

We examine and give numerical results for three realistic scenarios in which our

analytical model is used to study the performance of elastic cloud services. The first

scenario is hosting a cloud web service with different workloads. We present results

for key performance metrics as a function of the incoming web workload. These

metrics include mean response time, egress Internet bandwidth, request loss, and CPU

utilization. In the second scenario, we examine the required bandwidth and business

loss for Netflix’s streaming video service hosted in the AWS cloud. In the third

scenario, we validate our analysis by conducting a real experiment on the Amazon

AWS cloud platform, as illustrated in our testbed of Fig. 6. Experimentmeasurements

for latency, throughput, and CPU utilization are compared with the analytical results.

4.1 Web Service

In this example, we assume an elastic web service is being hosted on the cloud. The

incoming web requests are dispatched by a load balancer equally to a number of VM

instances running the web service. We fix the system size K to 300 requests. We fix

1=r ¼ 0:2ms and 1=l ¼ 10ms. The mean service rate l is realistic and consistent

with the reported experimental rates in [18, 52–54], and this service includes CPU

processing in addition to any required disk I/O or database access.

Figure 7 plots key performance metrics for the cloud web service hosted by

multiple instances in relation to the incoming load. The figure plots mean response

time, Internet network bandwidth, web request loss, and CPU utilization of used

instances. Figure 7(a) shows that the mean response time for the given VM

instances is relatively small under a light load, i.e. when k is smaller than 1400 Req/

s. However, as the offered load increases, the figure clearly shows the response time

becomes highly affected by the number of allocated VM instances. As shown, a web

service using 17 instances yields a significantly higher response time than a service

that is using 20 instances. It is worth noting that the saturation point of the cloud

service occurs when approximately the offered load k approaches ml. For example,

the saturation point when using 17 instances occurs at ml = 17 9 100 =

1700 Req/s. From queueing theory properties [35], the mean response time reaches

a plateau at K/ml = 100/1700 = 58 ms. The saturation points for different

instances are clearly shown in Fig. 7c in which a significant increase of request

loss is exhibited. Figure 7c shows that the saturation points are approximately 1700,

1800, 1900, and 2000 when using 17, 18, 19, and 20 instances, respectively. The

request loss curves are computed using Eq. (9).

Figure 7b shows the bandwidth required in Mb/s for egress (or outgoing) Internet

traffic. Such a performance metric can be used to properly engineer the network

bandwidth in the cloud datacenter. If we assume each incoming request returns one

HTML page of size around 1600 bytes, as reported in [52]. Under this assumption,

the required egress bandwidth in Mb/s is approximated to be 1600 bytes in addition

to TCP ? IP ? Ethernet headers, which all is equal to 20 ? 20 ? 26. For an

Ethernet frame of a maximum size of 1500 bytes, the HTML page has to be

segmented into two packets resulting in a total size of 2 9 (20 ? 20 ? 26) ?

16,000 & 16,092 bytes or 128.8 Kbits. Given an incoming rate, the overall egress

J Netw Syst Manage

123

Internet bandwidth can be computed by multiplying 128.8 Kbits times the mean

throughput given by Eq. (8).

To illustrate how the model predicts the number of required VM instances

needed to satisfy a given response time, we closely examine the curves for the mean

system delay and CPU utilization as shown in Fig. 7a, d, respectively. We focus on

the area of interest, in which the latency starts increasing, that is, when the arrival

rate k is between 1400 and 2000 Req/s. As expected, smaller latencies (and lower

CPU utilizations) are exhibited with a larger number of VM instances. Given a

measured offered load, the minimum number of VM instances can be determined to

satisfy a given response time. For example, if the SLO service response time to

satisfy (excluding network delays) is 15 ms, and the expected offered load (set at

the start for the elastic service or measured later by the LB) is 1500 Req/s, then the

needed VM instances will be 17, as shown in Fig. 7a. However, if the offered load

grows to 1600 Req/s, the needed VM instances will be 18, and so on. Figure 7d

shows the corresponding CPU utilizations are slightly over 90 % for 17 and 18 VM

instances at an offered load of 1500 and 1600 Req/s, respectively. In AWS auto-

scaling, a threshold of 85 % (set arbitrarily by the user) is typically recommended to

trigger scaling out (i.e. adding more VM instances) so that a service response time

can be met [2]. However, and as shown, this arbitrary threshold is not appropriate in

determining the needed number of VM instances to guarantee a given service

response time. As shown in Fig. 7d, at 1500 Req/s, and with 85 % CPU utilization,

20 VM instances are needed to maintain the response time below 15 ms. But

according to Fig. 7a, 17 VM instances will satisfy the 15 ms latency requirement.

This leads to unnecessary over provisioning and poor utilization of cloud resources,

and thereby result in a higher system cost for the cloud customer. In conclusion, the

VM instances should be sized based on the given response time.

4.2 Netflix Video Streaming

This example shows how our model can be used to estimate the required bandwidth

and business loss of on-demand Internet streaming media services hosted in the

cloud. Netflix is a leader provider of streaming movies and TV shows on a pay-per-

stream basis. As of 2010, Netflix had migrated all its compute and storage

infrastructures to the Amazon AWS cloud [42]. For our numerical example, we

assume the viewing time of TV and video sessions is 25 min on average. This

viewing time is reasonable for streaming sessions of TV shows and videos.

Typically, viewers will watch a movie and pause and watch the rest at a later time.

We also assume that each VM instance can handle 20 streams on average at one

time. The handling includes streaming tasks such as processing, monitoring, logging

and accounting. In addition, we assume that the mean required bandwidth per

stream is 2600 Kb/s as reported in [54, 55]. This bandwidth is the total bandwidth

including payload in addition to header bytes for RTP and IP protocols. We fix the

buffer size K to 20 requests.

Figure 8 plots the required video streaming bandwidth and request loss in relation

to the offered load k when running the streaming service under 10, 15, and 20 VM

instances. The figure shows that respective saturation points for these VM instances

J Netw Syst Manage

123

are approximately 8, 12, and 16 Req/min. This is in line with intuition as the saturation

point ought to occur when the offered load k approaches ml. For example, the

saturation point for 20 VM instances will be approximately ml = 20 9 (20/

25) = 16 Req/min. Figure 8a exhibits the Internet bandwidth that is needed for

streaming out of the cloud datacenter to the Internet. This is the traffic that the ISP will

have to carry to the Netflix customers. The required bandwidth is computed using the

mean throughput given by Eq. (8) and multiplying it by 2600 Kb/s.

Figure 8b depicts the curves of a video session request loss. The figure shows that

at a light load, there is almost no request loss. However, at a heavy load (beyond

incoming rate of 8 Req/min), a significant loss occurs with a more noticeable loss

when using smaller numbers of VM instances. This figure can be useful in estimating

business loss given a certain capacity for cloud resources. For example, if Netflix has a

pricing model where users are charged 2 ¢/min (i.e., 2 US cents per minute) of

viewing. Next, we illustrate the idea of using our model to estimate business loss. In

the example above, the business loss when using 10 cloud instances and at an

incoming rate of 20 Req/s can be computed as 2 9 20 9 Ploss =

2 9 20 9 60 % = 24 ¢/min. Similarly, the business loss when using 15 and 20

instances is 16 and 8 ¢/min, respectively.

4.3 Experimental Measurements

In this subsection we report the experimental measures of the testbed described in

Sect. 3. Table 1 validates our analytical model by comparing experimental results

with analytical results for three performance measures of response time, throughput,

and CPU utilization. The reported experimental results shown in the table are the

average of five runs. We found that five runs are sufficient and yield adequate

measurements. Conducting more runs would have little impact on the obtained

aggregate results. As described in Sect. 3, the measurements were taken for each run

with the Apache JMeter generating HTTP traffic flow for a duration of 15 min. We

chose to run the traffic flow for 15 min to account for the fluctuation and variability

exhibited in the AWS cloud environment due to virtualization and other workload

and network activities that might be presented by other cloud-hosted services and

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30

35

40

45

Offered Load (Req/min)

V
id

eo
 S

tre
am

in
g

B
an

dw
id

th
 (M

b/
s)

VM Instances = 20
VM Instances = 15
VM Instances = 10

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

Offered Load (Req/min)

V
id

eo
 S

es
si

on
 R

eq
ue

st
 L

os
s

(%
)

VM Instances = 20
VM Instances = 15
VM Instances = 10

(a) (b)

Fig. 8 Netflix video service performance curves

J Netw Syst Manage

123

applications. The measurements of these experiments were taken around 12

midnight GST time in the Amazon AWS zone located in Ireland. It is worth

mentioning that at the end of each run, JMeter reports key statistics that include the

request response time and throughput. However, JMeter, as of the time of this

writing, does not report measurement of the request loss.

We report experimental results in Table 1 and compare these results with the

average results obtained from Analysis. Appache JMeter For the shown experimental

measurements, we recorded the minimum, maximum, and average values for the five

runs. We considered four different numbers for compute VMs with specific

workloads. The workloads were selected to be close to the saturation point of the

VMs, i.e. when the VM’s CPU utilization reached close to 80 %. Specifically, we

considered 5, 10, 20, and 30 VMs, with 400, 800, 1500, and 2500 Req/s, respectively.

A number of observations can be made from Table 1. First, the average experimental

measurements followed the same trend and pattern of the analysis results. In a way,

our analytical results are in good agreement with the experimental measurements.

This obviously validates our analytical model. Second, it was observed that the

response times obtained from the experiments, in all cases, were larger than those of

the analysis. The reason for this is that the analysis average response times account for

the one-way delays incurred at the LB and VMs, and it do not account for the

additional processing delays incurred at the JMeter machine associated with the

HTTP request generation and then the reception and statistics recording of the HTTP

replies. So, an increase of 2–3 ms delays was expected. Third, it was observed that the

throughput measurements were slightly less than those of yjr analysis. As shown from

the table, the difference is in the order of 5 %. At a low rate of 400 Req/s, the average

measured throughput was 379 Req/s, and at a high rate of 2500 Req/s, the average

measured throughput is 2391 Req/s. It is not certain why this is so, but it can be

attributed to the ability of JMeter to generate the exact rate. This can also be attributed

to the virtualization and network conditions of the cloud environment. Finally, when

examining the min and max values for the recorded measurements, it is clear that the

experimental results exhibit considerable fluctuation and variability. The main reason

for this is due to the virtualization technology implemented at different levels in the

cloud data center. Virtualization can be applied to physical machines, network

devices, and disk storage. In addition, with the AWS cloud, we have no control over

where the VMs are co-located, i.e., within the same network or different networks.

Moreover, significant fluctuation can be attributed to other activities carried out by

other cloud-hosted services and applications that might be running simultaneously in

the cloud. These cloud services and applications can introduce significant workload

and traffic on the shared network devices and links, and therefore, impact the overall

network delay and performance.

5 Conclusion

In this paper, we have presented an analytical model that can be used to achieve

proper elasticity for cloud-hosted applications and services. Particularly, given the

offered workload and the processing capacity of each VM, the model can predict the

J Netw Syst Manage

123

minimal number of VMs required to satisfy a particular SLO criterion. In addition,

the model can predict the required number of load balancers needed to achieve

proper elasticity. We have demonstrated how the model can be used in capacity

engineering and the estimation of cloud compute and network resources for

different real world scenarios that include cloud-hosted web services and Netflix

streaming media service. We have validated our analytical model by obtaining

experimental measurements from a testbed setup on the Amazon AWS cloud.

Noticeable fluctuation and variability were exhibited in the experimental measure-

ments, but the overall mean measurements were in adequate agreement with

analysis results. The fluctuation in measurements can be attributed to virtualization

of the cloud compute and network resources in addition to activities of other cloud-

hosted services and applications. As a future work, plans are underway to build an

elastic cloud-hosted web service on the Amazon AWS IaaS cloud platform. We will

utilize our derived analytical formulas to estimate the minimal number of VMs

needed to satisfy a given SLO response time. The elasticity and the performance of

such a cloud service will be evaluated. Moreover, we plan to devise novel schemes

to best estimate a suitable interval to trigger the adjustment of the required VMs as

well as to best measure and estimate the mean workload. The estimation of the mean

workload can be a challenging task as traffic can be highly fluctuating with

intermittent unexpected workload spikes. As future research directions, it will be

interesting to study the impact of network utilization generated by the co-located

VMs and hosted services on guaranteeing the SLO latency. For this, the placement

of the minimal number of VMs and LBs within the datacenter becomes critical.

Improper placement of a VM within a rack, which hosts highly active VMs, can

result in violating the SLO latency.

Acknowledgments We would like to acknowledge the reviewers for their invaluable comments and

feedback that tremendously enhanced the quality of our work. Moreover, the experimental work in this

paper was supported by a generous research Grant provided by Amazon AWS in Education [56].

References

1. Azeez, A.: Auto-scaling web services on Amazon EC2 (2014). http://people.apache.org/*azeez/

autoscaling-web-services-azeez.pdf

2. Amazon Inc.: Amazon web services auto scaling (2014). http://aws.amazon.com/autoscaling

3. Aceto, G., Botta, A., de Donato, W., Pescape, A.: Cloud monitoring: a survey. J. Comput. Netw.

57(9), 2093–2115 (2013)

4. Amazon Inc.: AWS web services (2014). http://aws.amazon.com/

5. Google Inc.: Google compute engine (2014). https://cloud.google.com/products/compute-engine/

6. Google Inc.: Google App Engine (2014). http://appengine.google.com/

7. Lorido-Botran, T., Miguel-Alonso, J., Lozano, J.A.: A review of auto-scaling techniques for elastic

applications in cloud environments. J. Grid Comput. 12(4), 559–592 (2014)

8. Lagar-Cavilla, H, Whitney, J., Scannell, A., Patchin, P., Rumble, S., Lara, E., Brudno, M., Satya-

narayanan, M., SnowFlock: rapid virtual machine cloning for cloud computing. In: Proceedings of

the 4th ACM European Conference on Computer Systems, EuroSys’09, Nuremberg, Germany,

March 2009, pp. 1–12

9. Mao, M., Humphrey, M.: A performance study on the MV startup time in the cloud. In: Proceedings

of the 5th IEEE International Conference on Cloud Computing (CLOUD2012), June 2012,

pp. 423–430

J Netw Syst Manage

123

http://people.apache.org/%7eazeez/autoscaling-web-services-azeez.pdf
http://people.apache.org/%7eazeez/autoscaling-web-services-azeez.pdf
http://aws.amazon.com/autoscaling
http://aws.amazon.com/
https://cloud.google.com/products/compute-engine/
http://appengine.google.com/

10. Iqbal, W., Dailey, M., Carrera, D., Janecek, P.: Adaptive resource provisioning for read intensive

multi-tier applications in the cloud. J. Future Gener. Comput. Syst. 27(6), 871–879 (2011)

11. Liu, H., Wee, S.: Web server farm in the cloud: performance evaluation and dynamic architecture. In:

Proceedings of the 1st 2009 International Conference on Cloud Computing, Springer, Berlin,

pp. 369–380 (2009)

12. Wang, Z., Chen, Y., Gmach, D., Singhal, S., Watson, B., Rivera, W., Zhu, X., Hyser, C.: AppRAISE:

application-level performance management in virtualized server environments. IEEE Trans. Netw.

Serv. Manag. 6(4), 240–254 (2008)

13. Urgaonkar, B., Shenoy, P., Chandra, A., Goyal, P., Wood, T.: Agile dynamic provisioning of mult-

tier internet applications. ACM Trans. Auton. Adapt. Syst. 3, 1–39 (2008)

14. Urgaonkar, B., Pacifici, G., Shenoy, P., Spreitzer, M., Tantawi, A.: An analytical model for multi-tier

internet services and its applications. In: Proceedings of the 2005 ACM SIGMETRICS International

Conference, vol. 33, Alberta, Canada, pp. 291–302

15. Khazaei, H., Misic, J., Misic, V.: Performance analysis of cloud computing centers using M/G/m/

m ? r queueing systems. IEEE Trans. Parallel Distrib. Syst. 23(5), 936–943 (2012)

16. Kikuchi, S., Matsumoto, Y.: Performance modeling of concurrent live migration operations in cloud

computing systems using PRISM probabilistic model checker. In: Proceedings of the 4th IEEE

International Conference on Cloud Computing, Melbourne, Australia, pp. 49–56 (2011)

17. Firdhous, M., Ghazali, O., Hassan, S.: Modeling of cloud system using Erlang formulas. In: Pro-

ceedings of the 2011 7th Asia-Pacific Conference on Communications (APCC), Saba, Malaysia,

October, pp. 411–416 (2011)

18. Xiong, K., Perros, H.: Service performance and analysis in cloud computing. In: Proceedings of the

2009 IEEE Congress on Services, Los Angeles, Californian, July 2009, pp. 693–700

19. Wuhib, F., Yanggratoke, R., Stadler, R.: Allocating compute and network resources under man-

agement objectives in large-scale clouds. J. Netw. Syst. Manag. 23, 111–136 (2015)

20. Jennings, B., Stadler, R.: Resource management in clouds: survey and research challenges. J. Netw.

Syst. Manag. 23, 567–619 (2015)

21. Chunlin, L., Layuan, L.: Multi-layer resource management in cloud computing. J. Netw. Syst.

Manag. 22(1), 100–120 (2014)

22. Salah, K., Boutaba, R.: Estimating service response time for elastic cloud applications. In: Pro-

ceedings of the 1st IEEE International Conference on Cloud Networking (CloudNet 2012), Paris,

France, 28–30 November 2012, pp. 12–16

23. Cockcroft, A.: Utilization is virtually useless as a metric. In: Proceedings of CMG 2006 Conference,

December 2006

24. Salah, K.: Implementation and experimental evaluation of a simple packet rate estimator. AEU Int.

J. Electron. Commun. 63(11), 977–985 (2009)

25. Salah, K., Haidari, F.: Performance evaluation and comparison of four network packet rate esti-

mators. AEU Int. J. Electron. Commun. 64(11), 1015–1023 (2010)

26. Salah, K., Haidari, F.: On the performance of a simple packet rate estimator. In: IEEE/ACS Inter-

national Conference on Computer Systems and Applications, 2008. AICCSA 2008 (2008)

27. Andersson, M., Bengtsson, A., Host, M., Nyberg, C.: Web server traffic in crisis conditions. In:

Proceedings of the rd Swedish national computer networking workshop. Nov 2005

28. Leland, W., Taqqu, M., Willinger, W., Wilson, D.: On the self-similar nature of ethernet traffic.

IEEE/ACM Trans. Netw. 2(1), 1–15 (1994)

29. Paxson, V., Floyd, S.: Wide-area traffic: the failure of poisson modeling. IEEE/ACM Trans. Netw.

3(3), 226–244 (1995)

30. Willinger, W., Taqqu, M., Sherman, R., Wilson, D.: Self-similarity through high-variability: statis-

tical analysis of ethernet LAN traffic at the source level. In: Proceedings of ACM SIGCOMM,

Cambridge, Massachusetts, pp. 100–113, Aug 1995

31. Salah, K., Elbadawi, K., Boutaba, R.: Performance modeling and analysis of network firewalls. IEEE

Trans. Netw. Serv. Manag. 9(1), 12–21 (2012)

32. Van Der Mei, R.D., Hariharan, R., Reeser, P.K.: Web server performance modeling. J. Telecommun.

Syst. 16(3–4), 361–378 (2001)

33. Chandy, K.M., Sauer, C.H.: Approximate methods for analyzing queueing network models of

computing systems. J. ACM Comput. Surv. 10(3), 281–317 (1978)

34. Vaquero, L., Rodero-Merino, L., Buyya, R.: Dynamically scaling applications in the cloud. ACM

SIGCOMM Comput. Commun. Rev. 41(1), 45–52 (2011)

35. Gross, D., Harris, C.: Fundamentals of Queueing Theory. Wiley, New York (1998)

J Netw Syst Manage

123

36. Salah, K.: To coalesce or not to coalesce. Int. J. Electron. Commun. 61(4), 215–225 (2007)

37. Jain, R.: The art of computer systems performance analysis: techniques for experimental design,

measurement, simulation, and modeling. Wiley, New York (1991)

38. Amazon Inc.: Amazon Elastic Load Balancing (2014). http://aws.amazon.com/elasticloadbalancing/

39. Kleinrock, L.: Power and deterministic rules of thump for probabilistic problems in computer

communications. In: Proceeding of the IEEE ICC’79, Boston, Massachusetts, June 1979

40. Law, A., Kelton, W.: Simulation Modeling and Analysis, 2nd edn. McGraw-Hill, New York (1991)

41. White, J.: An effective truncation heuristic for bias reduction in simulation output. Simul. J. 69(6),
323–334 (1997)

42. Amazon Inc.: Amazon EC2 instances (2014). https://aws.amazon.com//ec2/instance-types/

43. Apache JMeter: Apache.org. http://jmeter.apache.org/

44. Custom Plugins for Apache JMeter: JMeter-Plugins.org. http://jmeter-plugins.org/

45. HAProxy: 2014. http://haproxy.1wt.eu/

46. AWS Documents: HAProxy layer (2014). http://docs.aws.amazon.com/opsworks/latest/userguide/

workinglayers-load.html

47. Amazon Web Services: Amazon Virtual Private Cloud Route Tables. http://aws.amazon.com/

documentation/vpc/

48. Botta, A., Dainotti, A., Pescapè, A.: A tool for the generation of realistic network workload for

emerging networking scenarios. Comput. Netw. 56(15), 3531–3547 (2012)

49. Distributed Internet Traffic Generator (2014). http://traffic.comics.unina.it/software/ITG/

50. Dainotti, A., Pescape, A., Ventre, G.: A packet-level characterization of network traffic. Proceedings

of the 11th IEEE Workshop on Computer-Aided Modeling, Analysis and Design of Communication

Links and Networks, pp. 38–45 (2006)

51. Salah, K., Hamawi, M.: Comparative packet-forwarding measurement of three popular operating

systems. Int. J. Netw. Comput. Appl. 32(4), 1039–1048 (2009)

52. Dejun, J., Pierre, G., Chi, C.-H.: EC2 performance analysis for resource provisioning of service-

oriented applications. In: Proceedings of the 3rd Workshop on Non-functional Properties and SLA

Management in Service-Oriented Computing, Nov 2009

53. Islam, S., Lee, K., Fekete, A., Liu, A.: How a consumer can measure elasticity for cloud platforms.

In: Proceedings of the 3rd International Conference on Performance Engineering, Boston, MA, 22–25

April 2012

54. Mello, J.P.: Netflix rates broadband provided by bandwidth. In: PCWorld Magazine. 27 Jan 2011

55. Ward, N.: How to improve Netflix streaming (2014). http://www.helium.com/items/2067366-how-to-

improve-netflix-streaming

56. Amazon Inc.: Amazon AWS Education Grants (2014). http://aws.amazon.com/education

Khaled Salah is an associate professor at the ECE Department, Khalifa University, UAE. He received the

B.S. degree in Computer Engineering with a minor in Computer Science from Iowa State University,

USA, in 1990, the M.S. degree in Computer Systems Engineering from Illinois Institute of Technology,

USA, in 1994, and the Ph.D. degree in Computer Science from the same institution in 2000. His primary

research interests are in the areas of cloud computing, cyber security, and queueing systems.

Khalid Elbadawi received his the Ph.D. degree from the School of Computing, College of Computing

and Digital Media, DePaul University, USA. He received his BS degree in Mathematics and Computer

Science from University of Khartoum, Sudan, in 1994. In 2001, he joined King Fahd University of

Petroleum and Minerals and obtained his MS degree in 2003. His research interests are in performance

analysis, cloud computing, and network resource management.

Raouf Boutaba is a University of Waterloo computer science professor. He is the founding EiC of the

IEEE Transactions on Network and Service Management (2007–2010). He received several recognitions

including the Fred Ellersick Prize, the Dan Stokesbury award, and the McNaughton Gold Medal. He is

IEEE, EIC, and CAE fellow.

J Netw Syst Manage

123

http://aws.amazon.com/elasticloadbalancing/
https://aws.amazon.com//ec2/instance-types/
http://jmeter.apache.org/
http://jmeter-plugins.org/
http://haproxy.1wt.eu/
http://docs.aws.amazon.com/opsworks/latest/userguide/workinglayers-load.html
http://docs.aws.amazon.com/opsworks/latest/userguide/workinglayers-load.html
http://aws.amazon.com/documentation/vpc/
http://aws.amazon.com/documentation/vpc/
http://traffic.comics.unina.it/software/ITG/
http://www.helium.com/items/2067366-how-to-improve-netflix-streaming
http://www.helium.com/items/2067366-how-to-improve-netflix-streaming
http://aws.amazon.com/education

	An Analytical Model for Estimating Cloud Resources of Elastic Services
	Abstract
	Introduction
	Usefulness and Applicability

	Markovian Analytical Model
	Limitations
	Scaling the Load Balancer (LB)

	Verification and Validation
	Numerical Results
	Web Service
	Netflix Video Streaming
	Experimental Measurements

	Conclusion
	Acknowledgments
	References

