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Abstract—In a Wireless Mesh Network (WMN), the traffic is 

aggregated and forwarded towards the gateways. Strategically 
placing and connecting the gateways to the wired backbone is 
critical to the management and efficient operation of a WMN. 

In this paper, we address the problem of gateways placement, 
consisting in placing a minimum number of gateways such that 
QoS requirements are satisfied. We propose a polynomial time 
near-optimal algorithm which recursively computes minimum 
weighted Dominating Sets (DS), while consistently preserving 
QoS requirements across iterations. We evaluate the 
performance of our algorithm using both analysis and 
simulation, and show that it outperforms other alternative 
schemes by comparing the number of gateways placed in 
different scenarios. 
 

Index Terms— Wireless mesh networks, gateways placement, 
clustering, approximation algorithms.  
 

I. INTRODUCTION 
IRELESS is well established for narrowband access 

systems, but its use for broadband access is relatively 
new. Wireless mesh architecture is a first step towards 
providing high-bandwidth network coverage. Mesh 
architecture sustains signal strength by breaking long 
distances into a series of shorter hops. Intermediate nodes not 
only boost the signal, but cooperatively make forwarding 
decisions based on their knowledge of the network. Such 
architecture provides high network coverage, spectral 
efficiency, and economic advantage. 

Recently, interesting commercial applications of wireless 
mesh networks (WMN) have emerged. One example of such 
applications is “community wireless networks” [1] [2]. 
Several vendors have recently offered WMN products. Some 
of the most experienced in the business are Nortel [3], Tropos 
Networks [4], and BelAir Networks [5]. 
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WMNs have a relatively stable topology except for 
occasional node failures or additions. Practically all the traffic 
flows either to or from a gateway, as opposed to ad hoc 
networks where the traffic flows between arbitrary pairs of 
nodes. Gateways would be connected directly to the fixed 
network and therefore constitute traffic sinks and sources to 
WMNs. Therefore, strategically placing and connecting the 
gateways to the wired backbone is critical to the management 
and efficient operation of a WMN. 

The analysis of WMN scalability is based on the following 
scaling relationships: traffic increases with the number of 
nodes, and traffic also increases with the distance over which 
each node wishes to communicate (i.e. due to packet 
forwarding). In [6], Li et al. showed that λ , the capacity 
available to each node (i.e. the rate at which packets are 
originated), is bounded by 

r
L

n
C

<λ  

where C is the total one-hop capacity of the network, n is the 
number of nodes, L  is the expected path length and r is the 
fixed radio transmission range such that L r  is the minimum 
number of hops to deliver packets. 

The above inequality shows that as the expected path length 
increases, the bandwidth available for each node to originate 
packets decreases. Therefore, the network scales better when 
the traffic pattern is local. That is, each node sends only to 
nearby gateways within a fixed radius, independent of the 
network size. The expected path length clearly remains 
constant as the network size grows. Hence, for optimal 
performance, the WMN should be divided into disjoint 
clusters, covering all nodes in the network. Within each 
cluster, the cluster-head would serve as the gateway, 
connected to the wired backbone. 

A tree-based routing scheme would easily allow flows 
aggregation and would minimize overhead, ensuring an 
optimal utilization of bandwidth [7]. Hence, a spanning tree 
rooted at the gateway can be used for traffic forwarding. Each 
node is mainly associated to one tree, and would attach to 
another tree as an alternative route in case of path failure. 

For operational considerations, the gateway placement 
problem should take into account the Quality of Service (QoS) 
requirements such as delay and bandwidth. In a multihop 
network, significant delay occurs at each hop due to 
contention for the wireless channel, packets processing and 
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queuing delay. The delay is therefore a function of the number 
of communication hops between the source and the gateway. 
The delay constraint is translated into an upper bound R on the 
cluster radius, or a maximum depth R of the spanning tree 
rooted at the gateway. 

Bandwidth requirements are of two forms. First, the total 
traffic inside each cluster is bounded by the capacity of the 
gateway, based on its connectivity to the internet and its 
processing speed. This requirement is translated into an upper 
bound on the cluster size S, assuming each AP generates an 
equal amount of one unit of traffic. 

Guaranteeing a throughput for individual flows in a 
multihop wireless network is more challenging. For 
convenience, we assume a multi-channel WMN where 
interfering wireless links operate on different channels, 
enabling multiple parallel transmissions. The bottleneck on 
throughput is therefore reduced to the load of congested 
intermediate wireless links. Since traffic is aggregated and 
forwarded by intermediate APs, we refer to the load on 
individual wireless links as relay load L in unit of traffic. 
Therefore, the throughput requirement is translated to an 
upper bound on the relay load equal to the capacity of 
individual wireless links in unit of traffic. 

In this paper, we address the problem of gateway placement 
in a WMN, aiming at placing a minimum number of gateways 
while ensuring the QoS requirements discussed above. We 
present a polynomial time near-optimal algorithm to divide the 
WMN into clusters of bounded radius under relay load and 
cluster size constraints. 

The contribution of this work is the design of a novel 
algorithm consisting of recursively computing minimum 
weighted dominating sets for placing gateways in a WMN, 
while ensuring the above QoS requirements. 

The rest of this paper is organized as follows. Section 2 
presents an overview of related works. Section 3 describes the 
network model, presents the gateway placement problem and 
provides its ILP formulation. Section 4 presents a detailed 
description and analysis of the recursive dominating set 
algorithm with QoS constraints. Experimental analyses and 
comparison to alternative approaches are performed in Section 
5. Section 6 concludes this paper.  

II. RELATED WORK 
Our work inherits two major concepts from the literature: 

the capacity facility location problem (CFLP); and clustering 
and hierarchical routing in ad hoc networks. 

The gateway placement problem could be considered as an 
instance of the more general CFLP problem which has been 
studied in the fields of operations research and approximation 
algorithms. In the past several years, a lot of work has been 
done on the design and analysis of approximation algorithms 
[8] for two facility location problems: the uncapacitated 
facility location problem [9], and the k-median problem [10]. 
In those techniques, distance is expressed in terms of 
Euclidean-distance (relying on the triangular inequality) rather 

than in terms of hop-count, and consequently an upper bound 
on the relay load is not considered. In addition, there is no 
abstraction of a cluster or constraints on the cluster radius 
which is a necessary factor in placing gateways. 

There have been numerous studies on designing 
hierarchical routing architectures for ad hoc networks. 
Routing, based on a Connected Dominating Set (CDS) 
forming a spine to relay routing information and data packets, 
is a typical technique in MANETs [11] [12] [13]. The 
approximation algorithms developed to solve the CDS 
problem are not suitable in our context: simply relaxing the 
problem of connecting cluster-heads leads to non-optimal 
solutions. In addition, the proposed schemes are concerned 
with 1-hop clustering, which defeats the purpose of WMN.  

Other works have proposed k-hop clustering algorithms 
[14] [15] but none of them satisfy all the requirements of our 
clustering problem and rarely present a guarantee in 
comparison to the optimal performance.  

To date and to the best of our knowledge, very few schemes 
have been proposed to integrate the WMN with the wired 
backbone.  

In [16], Wong et al. addressed the gateway placement 
problem in two separate settings: either minimizing 
communication delay or minimizing communication cost. For 
each setting, they propose different statistically tuned 
heuristics, using the same strategy: at each step they decide 
which of the candidate gateways will be eliminated from 
further consideration. QoS constraints in terms of bounds on 
the relay load and cluster size are not considered. 
Furthermore, the proposed approximation algorithm gives no 
guarantee on the optimality of the solution. The additional 
QoS constraints considered in this paper make the problem 
more challenging.  

In [17], Chandra et al. addressed the problem of gateway 
placement, aiming at minimizing the number of gateways 
while guaranteeing AP's bandwidth requirements. They 
considered the problem as an instance of the network flow 
problem, allowing multipath routing. However, when 
constraints on communication path length are imposed, the 
proposed greedy heuristics leads to non-optimal solutions and 
hence no guarantee on performance. In addition, the iterative 
greedy approach makes the load of the gateways unbalanced, 
since gateways are placed whenever others are fully served. 
Finally, a clustered view of the WMN is not considered, 
making the design less suitable to our context.  

The most relevant work to ours is the one in [18]. Bejerano 
successfully adopts a clustered view of the WMN and used a 
spanning tree rooted at each clusterhead (i.e. gateway) for 
message delivery. Bejerano breaks the problem of clustering 
and ensuring QoS into two subproblems. The first one seeks 
to find a minimal number of disjoint clusters containing all the 
nodes subject to an upper bound on clusters' radius. The 
second one considers placing a spanning tree in each cluster, 
and clusters that violate the relay load or cluster size 
constraints are further subdivided. In this paper, we consider 
the combined problem where the spanning tree and cluster 
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coverage evolve in parallel as long as QoS requirements are 
satisfied. We show that the number of gateways required by 
our algorithm, subject to the same QoS requirements, is 
reduced by almost half in some cases, thus leading to a 
significant saving in deployment cost.  

III. SYSTEM DESCRIPTION 

A. Network Model 
We consider the problem of gateway placement in the 

context of Wireless Mesh Networks (WMN). A WMN is 
represented by an undirected graph G(V,E), called a 
connectivity graph. Each node v∈V represents an Access 
Point (AP) with a circular transmission range of 1 unit. The 
neighborhood of v, denoted by N(v), is the set of nodes 
residing in its transmission range. A bidirectional wireless link 
exists between v and every neighbor u∈N(v) and is 
represented by an edge (u,v)∈E. The number of neighbors of a 
vertex v is called the degree of v, denoted by ( )vδ . The 
maximum degree in a graph G is called the graph degree 

. )G∆( = ∆
The distance, denoted by d(u,v), between two nodes u and v 

is the minimum number of hops between them. The radius of 
a node v in G(V,E) is the maximum distance between v and 
any other node. The radius of G is hence defined as the 
minimum radius in the graph. On the other hand, the diameter 
of G is the maximum distance between two arbitrary nodes (or 
the maximum radius). 

For computational purposes, we use an adjacency matrix to 
represent the connectivity graph. The adjacency matrix of 
G(V,E) is a matrix with rows and columns labeled by the 
graph vertices V, with a 1 or 0 in position (m,n) according to 
whether vm and vn are directly connected or not. For the 
undirected graph G, the adjacency matrix is symmetric. 

B. Problem Description 
In this paper we address the efficient integration of the 

WMN with the wired network for Internet access, while 
ensuring QoS requirements. This consists in logically dividing 
the WMN into a set of disjoint clusters, covering all the nodes 
in the network. In each cluster, a node would serve as a 
gateway, connected directly to the wired network, and serving 
the nodes inside the cluster. 

In each cluster, a spanning tree rooted at the gateway is 
used for traffic aggregation and forwarding. Each node is 
mainly associated to one tree, and would attach to another tree 
as an alternative route in case of path failure. 

For operational reasons, the gateway placement or 
clustering problem is subject to QoS constraints. As discussed 
earlier, the QoS constraints are translated into the following: 
an upper bound R on the cluster radius, an upper bound S on 
the cluster size and an upper bound L on relay traffic. The 
gateway placement problem therefore consists in logically 
dividing the WMN into a minimum number of disjoint 
clusters that cover all nodes and satisfy all three QoS 
constraints. 

C. ILP Formulation 
We formulate the placement problem as an integer linear 

program. Let N=V be the set of APs and G ⊆ V be the set of 
gateways. G is a subset of V as is the case in Nortel solution 
[3]. We introduce a binary variable yi to indicate whether a 
gateway i∈G is set up. To represent gateways allocation for 
APs, we define another binary variable xi,j which takes the 
value of 1 whenever AP j∈N is assigned to gateway i∈G. hi,j 
represents the minimum number of hops between AP j∈N and 
gateway i∈G.  is a binary variable indicating whether the 

path from i to j passes through node k. Recall that L and S are 
upper bounds on the relay load and cluster size constraints, 
respectively. Our objective function is formulated as follows: 

,
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Condition (a) denotes that each AP is assigned to one and 

only one gateway. Inequality (b) implies that a gateway has to 
be set up before being assigned APs. Inequality (c) ensures 
that there exists a path with at most R  hops between the AP 
and the assigned gateway. This constraint implies that a 
cluster of bounded radius can be formed. Inequalities (d) and 
(e) provide an upper bound on the relay load and cluster size 
constraints, respectively. The last three conditions indicate 
that yi, xi,j, and ,

k
i jz  are binary variables. 

By reducing the minimum set cover problem to the gateway 
placement problem given by the ILP above, one can show that 
it is NP-hard to find a minimum number of gateways. In 
practice an LP solver, such as Matlab or CPLEX, can only 
handle small-sized networks under the proposed model due to 
the fast increase in the number of variables and constraints 
with the network size. It will not be possible to solve the ILP 
for large networks due to memory constraints. 

In the next section, we present a polynomial time near-
optimal approximation algorithm to solve the placement 
problem that ensures the QoS requirements. 
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IV. RECURSIVE DOMINATING SET ALGORITHM 

A. Dominating Set Problem 
The core algorithm consists of recursive approximations of 

the minimum Dominating Set (DS) problem. The 
corresponding decision problem of DS generalizes the NP-
hard Vertex Cover problem and is therefore also NP-hard 
[19].  

Since the minimum DS problem is NP-hard, we rely on a 
greedy approach for approximation. Approximating a DS 
using the greedy approach was first proposed by Chvatal [19] 
for a more general model. The dominating set problem could 
be formulated as follows:   

Definition 1: A dominating set of a graph G=(V,E) is a 
subset C ⊂ V of the nodes such that for all nodes v∈V, either 
v∈C or a neighbor u of v is in C. 

B. Algorithm Description 
Our algorithm consists of recursively computing minimum 

dominating sets: at iteration1 i, we compute a minimum 
dominating set of the graph  resulting 
from the previous iteration. 

iV 1 1( ,i i iG V E− − −= 1)

 
Algorithm 1: Recursive_DS  ( ), , , ,V i R L S

1. Adj  = Adjacency_matrix ( ),V i  

2.  U V←
3. [ ]C ←  

4. While [ ]U ≠  

5.       v  = Greedy_selection ( )Adj  

6.       Neighbors'S v= ∪ ( ),v Adj  

7.        = Build_tree (_SP tree ), ',v S Adj  

8.        if    Satisfy_QoS ( )_ , ,SP tree L S  

9.               C C v← ∪
10.                'U U S← −
11.               Adj  = Adjacency_matrix ( ),U i  

12.        else  

13.                //Restricting the neighbors of  in  v iG
14.                //such that does not occur again 'S
15.                Modify_adjacency_matrix ( ),v Adj  

16.        end 
17. end 

18. if    Cluster_radius ( )1i + R>  

19.             return  C
20. end 

21. return   Recursive_DS ( )  , 1, , ,C i R L S+
 
The proposed algorithm, Recursive_DS ( , 

performs recursive calls. At each iteration, V represents the 

dominating set of the previous iterations, i represents the 
iteration number, and R, L and S represent the upper bounds 
on cluster radius, relay load and cluster size respectively. 

)

 

, , , ,V i R L S

1 In this paper, iterations refer to recursive iterations. For example, iteration 
i refers to the ith recursive step, or recursion. 

As shown at line 1, we first compute the adjacency matrix 
of graph  , which is an internal representation of 

the connectivity graph   consisting of the dominating set 
 of the previous iteration i-1. At iteration i, two nodes v and 

( , )i i iG V E=
iG

iV
iu V∈  are adjacent if they are i hops away. The rationale is 

presented in the next section. 
The While loop from line 4 to 17 selects iteratively the 

node iv V∈  that covers the greatest number of remaining 
nodes that are uncovered in Gi. The algorithm works as 
follows. The set U contains, at each stage, the set of remaining 
uncovered nodes. The set C contains the cover being 
constructed (i.e. the dominating nodes). Line 5 represents the 
greedy decision-making step. A node v is chosen that covers 
as many uncovered nodes as possible (with ties broken 
arbitrarily). Line 6 shows the resulting subset S’ composed of 
v and its neighbours. After v is selected, the nodes in S’ are 
removed from U, and v is placed in C (line 9 and 10). When 
the algorithm terminates, the set C contains the set of 
dominating nodes at level i. 

Lines 18-20 constitute the stopping criteria of the recursive 
calls. If the cluster radius of the next iteration is larger than R 
we return the set C which constitutes the set of required 
gateways, satisfying the QoS requirements. Otherwise, we call 
the function Recursive_DS , where C would 
represent Vi+1 for the iteration i+1. 

( , , , ,V i R L S )

However, before proceeding and adding v to the list of 
dominating nodes, we check whether a cluster rooted at v, 
including S’, is feasible. Recall that the original network is 
represented by  and clustering constraints in 
term of L and S should be applied to G0. We note that each 
node v∈Vi indexes (i.e. remembers) all the nodes in V0 it 
covered in previous iterations, those nodes shall be referred to 

as cover(u); such that . 

0 0 0( , )G V E=

0cover( )
i i

i

v V
v V

∈
=∪

We refer to a cluster as feasible if a spanning tree, rooted at 
 and covering all nodes in cover(S’), satisfies the relay load 

and cluster size constraints. At line 7, we build a spanning tree 
and we check if the constraints are satisfied, at line 8. If they 
are satisfied, we add v to the list of dominating nodes C, and 
remove S’ from U. Otherwise, the cover(S’) is too large and 
we remove an edge from Ei between v and another neighbour 
in Vi by modifying Adj such that the combination S’ of v does 
not occur again. This approach gives the chance to different 
feasible clusters to form before moving to the next iteration 
and increases the coverage of clusters. Hence, whenever the 
cluster radius reaches the upper bound R, all the clusters are 
guaranteed to satisfy the cluster size and relay load 
constraints.  

v

Determining feasibility before reaching the maximum 
radius size provides flexibility in terms of re-clustering with  
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Figure 1: Original network consisting of 93 nodes. We aim to place a 
minimum number of gateways satisfying the cluster radius R=6 
constraint. 

 

 
Figure 3: The graph G1(V1,E1)  

 
 

 
Figure 5: The graph G2(V2,E2)  

 
Figure 2: The resulting cluster-heads constitute V1 , as a result of the first 
iteration. This consists of minimal dominating set over G(V,E) of Fig. 1. 

 
 

 
Figure 4: The cluster-heads constitute V2 as a result of the second 
iteration. It consists of a minimal dominating set over G1(V1,E1) of Fig. 3. 
 

 
Figure 6: This is the last iteration, as the clusters radius equals the upper 
bound R=6. |V2|=2, hence the recursive algorithm places 2 gateways at 
the labeled positions. 
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neighboring nodes at intermediate iterations. We will show in 
Section V that this approach leads to a much lower number of 
required gateways, compared to other schemes which check 
for the cluster size and relay load constraints after forming 
clusters of radius R. 

C. Algorithm Illustration 
In this section, we illustrate the above algorithm by 

showing its intermediate steps. We consider a random 
topology consisting of 93 nodes in an area of 15x15, as shown 
in Fig. 1. The algorithm is implemented in Matlab. The goal is 
to divide the network into a minimum number of disjoint 
clusters subject to an upper bound on the radius R=6. Relay 
load and cluster size constraints are relaxed for the sake of 
simplicity. 

The first iteration consists in finding a minimal dominating 
set over G(V,E). Fig. 2 shows the 22 clusters, V1, resulting 
from the first iteration. The index at each cluster-head 
represents the order chosen by the greedy algorithm at line 5. 
The order reflects the idea of selecting the nodes which can 
cover a maximum number of uncovered nodes first. We note 
that the number of nodes |V1|=22 moving to the next iteration 
is considerably lower than the original |V0|=93. 

Fig. 3 shows the graph G1(V1,E1). Recall that two vertices in 
G1 are connected if they are 2-hops away in the original 
network G. The indices at each v1∈V1 in Fig. 3 represent the 
weight computed by the greedy algorithm, at line 5, which is 
the degree of the node observed in Fig. 2, and consequently 
shows the order in which they were selected. 

Fig. 4 consists of finding a minimal dominating set V2 over 
G1(V1,E1) shown in Fig. 3. The index at each cluster-head 
shows the order in which v2∈V2 were selected. Fig. 5 shows 
the resulting graph G2(V2,E2). Since any two nodes in G2 are at 
least 3-hops away, an edge (u2,v2)∈E2 exists if u2 and v2∈V2 
are 3-hops away. Finally, Fig. 6 shows the resulting V3 at the 
third iteration. The algorithm stops since the cluster radius of 
the next iteration exceeds the upper bound R. The next section 
will present an analytical analysis of the algorithm, 
formulating the relation between the maximum cluster radius 
ri and iteration i; the analysis will therefore justify the reason 
why the algorithm stops at iteration 3, given R=6. 

D. Algorithm Analysis 
In this section, we will denote G0(V0,E0) as simply G(V,E). 

From the definition of dominating sets, we obtain the 
following corollary where V1 denotes the dominating set of 
the first iteration: 

Corollary 1: For any node v∈V, there exists a node v1∈V1 
such that d(v,v1)=1 or v=v1. 

The second iteration consists of finding a dominating set 
over V1. The vertices v∈V1 are at least 2 hops away, therefore 
two vertices in V1 are adjacent if they are 2 hops away. In 
other words, the graph G1(V1,E1) sets up a connection between 
two vertices in V1 if they are 2 hops away in the original graph 
G. At iteration i=2, Adj will be a square matrix of size |V1|x|V1| 
and reflects the connectivity graph of G1. At the end of 

iteration 2, a set V2 will result and forms a dominating set over 
V1. V2 will constitute a cover that can reach any v1∈V1 in 2-
hops, leading to the following corollary: 

Corollary 2: For any node v1∈V1, there exists a node v2∈V2 
such that d(v1,v2)=2 or v1=v2. 

From Corollary 1 and 2, we can derive a bound on the 
distance from any node v∈V to v2∈V2. Since d(vi,vj) represents 
the shortest distance between vi and vj, we can write  
d(v,v2) ≤ d(v,v1) + d(v1,v2). Given that the distance between a 
node and itself is zero, we get d(v,v1) ≤ 1 and d(v1,v2) ≤ 2 for 
all v∈V, v1∈V1, and v2∈V2. Hence, d(v,v2) ≤ 3. 

Corollary 3: For any node v∈V, there exists a node v2∈V2 
such that d(v,v2) = 3. 

We now present a generalization. Since the distance 
between any two nodes belonging to the dominating set of 
iteration i is at least i+1 hops, two nodes will be considered 
connected at iteration i+1 if they are i+1 hops away. Recal 
that v=v0, we derive the following theorem by recursion:  

Theorem 1: For any node v∈V, there exists a node vi∈Vi 
such that d(v,vi) ≤ d(v,vi-1) + i. Reducing the term d(v,vi-1) 
further recursively and given that d(v,v0)=0, we obtain the 
expanded form: ( )( )1( , ) 1 2

id v v i i≤ × + × . 

Consequently, our algorithm will be able to guarantee an 
upper bound on the cluster radius of ri at iteration i. Recall 
that ri is the maximum distance d(v,vi) at iteration i. In order to 
hit a target radius size, one should set the initial value for r1 
adequately. Hence a general formula for ri can be written as: 

( )( ) ( )11 1ir i i r1 i= × + × + − ×2 . 

For example, if we set the value of r1 to 1, ri would take the 
following values at consecutive iterations: 

1, 2,3, 4,...
1,3,6,10,...i

i
r

=
=

 

Similarly, for r1= 2, we obtain 
1,2,3,4,...
2,5,9,14...i

i
r

=
=

 

Assuming a spanning tree would be built in each cluster 
rooted at the gateway, ri would serve as a guarantee for the 
upper bound on the depth of the tree. 

The maximum number of iterations that can be reached 
corresponds to the scenario where there is only one remaining 
gateway serving the whole network. In the best case, 
assuming the gateways are optimally placed, the iterations will 
proceed until ri exceeds the radius of the network. On the 
other hand, assuming the worst placement of gateways, the 
iteration will proceed until ri exceeds the diameter of the 
network. For a definition of a network radius and diameter, 
please refer to Section III-A. 

E. Algorithm Performance 
In this section, we study the run time and the approximation 

factor of our algorithm. The body of the While loop can be 
implemented to run in time O(|V|). We need O(|V|) to select 
the node with the highest degree, at line 5. Similarly, O(|V|) is 
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required to set up a spanning tree [20], and to check whether 
the QoS constraints are satisfied. 

On the other hand, the While loop will iterate a maximum 
of |V| times until all |V| nodes are covered. To show that, we 
assume first that F is the family of possible covers S’. The 
number of iterations of the While loop is bounded by 
min(|V|,|F|). However, in our context, each AP and its 
neighbours form a possible cover S’, since each AP is a 
candidate dominating node. The bound is therefore reduced to 
min(|V|,|F|)=min(|V|,|V|)=|V|. The method 
Recursive_DS ( ), , , ,V i R L S  can be therefore implemented to 
run in O(|V|2). 

Theorem 2:  The gateway placement algorithm can be 

implemented to run in time less then ( )22R O V× , where R 

is the required upper bound on the cluster's radius. 
Proof: The gateway placement algorithm have a run time of 

( )2
maxi O V× , where  is the number of performed 

recursive iterations. In the previous section, we have shown 
that 

maxi

( ) ( )

( )

1

2

1

11 1
2

1
2 2

ir i i r

i i r i

⎛ ⎞= × + × + − ×⎜ ⎟
⎝ ⎠

= + + − ×

i
 

Since i and r1 are positive numbers, 2
2i

ir > . Hence, we get  

2 ii < r   and max 2i R< . 
In addition to running in polynomial time, our algorithm 

can be shown to provide a near-optimal solution, in terms of 
the number of gateways placed. 

Theorem 3: The recursive greedy dominating set is a 
polynomial-time ( )nρ -approximation algorithm, where 

( ) ( )in Hρ = ∆∏ ,  is the graph degree at iteration i of Gi, and 
 is the harmonic function. 

i∆

( ) H

We refer to Chvatal [19] for the proof.  

F. Algorithm Enhancement 
In this section, we refine our algorithm and propose a 

weighted recursive algorithm. We compute a weight wi to each 
node vi in order to effectively select dominating nodes at each 
iteration. The weight would reflect the coverage of a node vi 
in the original network G(V,E) and the relative distance to  the 
nodes it covers. The initial algorithm uses a binary adjacency 
matrix, making the node’s degree in Gi(Vi,Ei), instead of 
G(V,E), the major contributor to its weight in the greedy 
selection step, line 5. 

The weighted recursive algorithm uses a weighted 
adjacency matrix to represent the connection state between 
vertices in Gi(Vi,Ei).  and  have a non-zero weight  

if  and  are adjacent in Gi. The weighted adjacency 
matrix is not symmetric because the vertices have dominance 
relationship over each other.  

i
mv i

nv ,
i
m nw

i
mv i

nv

The weights are calculated as follows: 

1
,

1

 0,  if ( , )  hops
1  ,  if 

  ,  if 

i i
m n

i i
m n n

i
n

d v v i

w W m n
i
W m n

−

−

⎧ >
⎪
⎪= × ≠⎨
⎪
⎪ =⎩

 

and 

,
i i
m m

n
W w

∀
= ∑ n  

where the initial conditions are 

0
,

0 0
,

  0,  if ( , ) 1 hops
  1,  otherwise

( ),  the node degree

i i
m n

m n

m m n m
n

d v vw

W w vδ
∀

⎧ >⎪= ⎨
⎪⎩

= =∑

 

The following is an insight to the calculation of the weights. 
Given the nature of the spanning tree, if a node  dominates 

 at iteration i, it would cover all the nodes covered by  
from iteration i-1 down to iteration 1. It is therefore beneficial 
for every node to carry a weight corresponding to the number 
of nodes it covered at previous iterations.  

i
mv

i
nv i

nv

However, the weight of a node  is not simply the sum of 
the nodes it covers. Instead, it is a weighted sum, inversely 
proportional to the distance of the nodes to . That is, a node 
farther away will have a lower contribution to the total weight 
of node  since it negatively impacts the relay load 
constraint. The notion of distance is incorporated through 
multiplying 

i
nv

i
nv

i
nv

1i
mW −  by 1

i . The weight is therefore inversely 

proportional to the iteration number, suggesting that nodes 
covered by  at iteration i are farther than nodes covered by 

at earlier iterations.  

i
nv

i
nv

i
mW  corresponds to the weight used and calculated by the 

greedy step to select a dominated node vm, at Line 5. The 
weight  is stored with vm in C, at Line 9. It is then used in 
the next iteration to populate the weighted adjacency matrix 

i
mW

1
,

i
m nw + , which in turn is used by the greedy selection step. 
The idea is challenging but the implementation is very 

simple as no further calculations are required other than the 
weight originally calculated in the greedy steps at iteration i-1 
and carried forward by  to iteration i. i

mw

V. EXPERIMENTAL ANALYSIS 

A. Alternative Algorithms 
In this section, we compare the performance of the basic 

and weighted recursive algorithms to two other alternatives: 
Iterative Greedy Dominating Set and Augmenting Placement. 

1) Iterative Greedy Dominating Set 
We compare our placement algorithms to the scheme 

proposed by Bejerano in [18]. The idea in [18] is to break the 
problem into two sub-problems and to solve each one 
separately. The first sub-problem seeks to find a minimum 
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number of disjoint clusters that contains all the nodes and 
satisfy the radius constraints. In the second one, each cluster is 
further divided into sub-clusters if either the relay load or 
cluster size constraints are violated. 

The iterative greedy dominating set heuristic [18] [19] is 
used for clustering, in the first sub-problem. This approach 
looks for the minimum dominating set of the power graph 

. It consists of selecting iteratively the node whose 
R-neighborhood contains the greatest number of remaining 
nodes that are uncovered. 

( ,R R RG V E )

2) Augmenting Placement 
Similar to [17] and [16], the augmenting placement 

represents another alternative for clustering. The algorithm is 
similar to the iterative greedy placement with respect to its 
internal procedure; however, it does not make greedy 
decisions regarding the next placement of additional 
gateways. Any placement providing subsequent coverage to 
uncovered nodes is considered. 

B. Performance Evaluation 
We evaluate the performance of the four different 

placement algorithms using various QoS parameters in terms 
of cluster size S, relay load L and radius size R. The 
algorithms are evaluated according to the number of required 
gateways or clusters they produce. 

For each setup, we generate 25 different random topologies 
and use the average to report performance results. Each 
topology consists of 175 nodes placed in an area of 10x10. 
The communication radius is set to 1, and the minimum 
distance separating any pair of nodes is set to 0.6 because 
placing APs very close to each others is not common in 
practice. Transmission pattern is assumed to be circular and 
Euclidean distance is used to decide whether two nodes are in 
communication range. After the random topology is 
generated, a post processing step is performed to ensure that 
the resulting graph is connected. We set a threshold for that 
purpose. If the ratio of disconnected nodes is less than the 
threshold, the disconnected nodes are removed. Otherwise, we 
generate a new topology. 

 
1) Effects of Relay Load 
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Figure 7: Effects of relay load constraints. Cluster Radius=6, Cluster Size=NaN 

We start by studying the effect of relay load constraint on 
gateways placement. We fix the upper bound on cluster radius 
to 6 and relax the constraint on the cluster size. As shown in 
Fig. 7, the effect of relay load constraints is mainly 
pronounced when it is very limited; for L=4, the iterative 
greedy and augmenting algorithms place twice the number of 
gateways required by the recursive algorithms. 

On the other hand, as the constraint L on the relay load is 
relaxed, the differences in performance shrink. In addition, 
when the upper bound L on the relay load exceeds 20, the 
number of required gateways by each algorithm remains 
constant; the network is then clustered according to the limit 
imposed by the upper bound on cluster radius. We can clearly 
see that the weighted recursive algorithm performs best for all 
values of L, followed by the basic recursive algorithm. 

 
2) Effects of Cluster Size 
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Figure 8: Effects of the cluster size constraints. Cluster radius = 6, Relay Load 
= NaN 

 
Next we study the impact of cluster size on the number of 

required gateways by each algorithm. The relative 
performance of the four algorithms is consistent with the 
previous analysis.  

We can clearly see in Fig. 8 that the iterative greedy and 
augmenting placement are heavily penalized when the cluster 
size constraint is strict (i.e. S is small). As S decreases, the 
number of required gateways increases exponentially since 
each cluster is subdivided further as long as the cluster size 
constraint is violated. A large number of small sub-clusters 
results without the possibility to merge with neighbouring 
clusters. The sub-clustering effect constitutes the major pitfall 
for the iterative algorithms. 

On the other hand, the number of gateways required by the 
recursive algorithms increases almost linearly as the constraint 
on the cluster size becomes stricter. The reason is that clusters 
have the chance to merge with other clusters at earlier 
iterations in order to form feasible clusters. In contrast, the 
iterative algorithms form large clusters first and then 
subdivide them individually into feasible sub-clusters. 

As shown in Fig. 8, our recursive algorithms consistently 
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yield a lower number of gateways than the iterative 
algorithms. For example, for S=6, they require only 50% of 
the number of gateways placed by the iterative algorithms.  

 
3) Effects of Cluster Radius 
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Figure 9: No relay load or cluster size constraints: L = NaN, S = NaN. 
Comparing clustering algorithms. 

 
Next we compare the performance of the four algorithms as 

a function of cluster radius R. First, we illustrate their 
performance with no additional relay load or cluster size 
constraints. In such scenario, the performance reflects only the 
embedded clustering algorithms. As shown in Fig. 9, the four 
algorithms show relatively similar performance in terms of 
clustering alone.  
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Figure 10: With relay load constraint: L=6 
 
However, when adding a relay load constraint such as L=6, 

the performance of the four algorithms differs significantly as 
shown in Fig. 10.  A similar performance to Fig. 10 is obtained 
when considering the addition of cluster size constraint 
instead of relay load constraint.  
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Figure 11: Weighted Recursive Algorithm: effect of the relay load L 
constraint on the performance, as a function of cluster radius R. 

 
For further illustration, we plot separately the performance 

of the weighted recursive algorithm and the iterative greedy 
algorithm while varying the relay load constraint. We pick 
those two algorithms to contrast the recursive to the iterative 
approach. We observe in Fig. 11 that the recursive algorithm 
reacts smoothly and consistently as the relay load constraint L 
becomes more restrictive. Intuitively, for a given relay load L, 
as we increase the upper bound on cluster radius R, we expect 
the number of resulting clusters to decrease and then stabilize 
at a certain value (representing the relaxation of constraint R). 
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Figure 12: Iterative Greedy Algorithm: effect of the relay load L constraint on 
the performance, as a function of cluster radius R. 

 
However, the iterative algorithm, as shown in Fig. 12, 

performs inconsistently as the upper bound R on the cluster 
radius increases. Surprisingly, if we consider L=4 in Fig. 12, 
the algorithm places more gateways for a cluster radius 
constraint of 6 than a radius constraints of 3 or 4. Such 
unexpected performance of the iterative greedy algorithm had 
been pointed out in [18], however interpreted differently. 

This problem occurs whenever the cluster radius is big 
enough to accommodate a large number of nodes in the initial 
clustering process. However, at a later stage, whenever 
various constraints are imposed, the iterative algorithm 



Paper: #1568973985 
 

10

subdivides the clusters excessively to satisfy those constraints. 
Consequently, a large number of small sub-clusters is 
obtained. 

This problem is absent in the proposed recursive algorithms 
because clusters are not formed initially unless they satisfy all 
QoS constraints. 

We note that the two proposed recursive algorithms 
perform better than the two other alternatives, as shown in 
Fig. 10. Specifically, the weighted recursive algorithm 
performs best in all scenarios.  

VI. CONCLUSION AND FUTURE WORK 
In this paper, we elaborated on the importance of clustering 

for the efficient operation of WMNs. We presented an ILP 
formulation for the gateway placement problem and showed 
that it is NP-hard. Then, we proposed a novel recursive 
algorithm for clustering the WMN within a bounded radius, 
while ensuring relay load and cluster size constraints. We 
showed that our algorithm runs in polynomial time and yields 
near-optimal results. Next, we compared the performance of 
the recursive algorithm to other alternatives. We showed that 
it places up to 50% less gateways, and exhibits smooth and 
consistent performance when subject to various QoS 
constraints. 

The main advantage of the proposed recursive algorithms is 
that clusters have the chance to merge with other clusters at 
earlier iterations in order to form feasible clusters satisfying 
all QoS constraints. No cluster is formed unless it satisfies all 
QoS constraints. In contrast, the existing iterative algorithms 
consider first clustering the WMN with regard to the upper 
bound on cluster radius R. At a later stage, they subdivide the 
clusters individually until the remaining QoS constraints are 
satisfied. This results into a large number of small clusters 
without the possibility to merge with neighboring clusters. 

The followings are possible directions for future work. 
First, taking into account wireless interference would provide 
a better assessment of the capacity available for APs to 
generate traffic, although would add complexity to the 
algorithm. Second, it would be interesting to consider a 
decentralized version of the algorithm’s design, given the 
locality of computations.  Third, it is also interesting to study 
the impact of topology changes, and whether it introduces any 
significant ripple effect.  
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