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Gateway Placement Optimization in Wireless
Mesh Networks with QoS Constraints

Bassam Aoun, Raouf Boutaba, Youssef Iragi and Gary Kenward

Abstract—In a Wireless Mesh Network (WMN), the traffic is
aggregated and forwarded towards the gateways. Strategically
placing and connecting the gateways to the wired backbone is
critical to the management and efficient operation of a WMN.

In this paper, we address the problem of gateways placement,
consisting in placing a minimum number of gateways such that
QoS requirements are satisfied. We propose a polynomial time
near-optimal algorithm which recursively computes minimum
weighted Dominating Sets (DS), while consistently preserving
QoS requirements across iterations. We evaluate the
performance of our algorithm using both analysis and
simulation, and show that it outperforms other alternative
schemes by comparing the number of gateways placed in
different scenarios.

Index Terms— Wireless mesh networks, gateways placement,
clustering, approximation algorithms.

I. INTRODUCTION

W IRELESS is well established for narrowband access
systems, but its use for broadband access is relatively
new. Wireless mesh architecture is a first step towards
providing  high-bandwidth  network  coverage. =~ Mesh
architecture sustains signal strength by breaking long
distances into a series of shorter hops. Intermediate nodes not
only boost the signal, but cooperatively make forwarding
decisions based on their knowledge of the network. Such
architecture provides high network coverage, spectral
efficiency, and economic advantage.

Recently, interesting commercial applications of wireless
mesh networks (WMN) have emerged. One example of such
applications is “community wireless networks” [1] [2].
Several vendors have recently offered WMN products. Some
of the most experienced in the business are Nortel [3], Tropos
Networks [4], and BelAir Networks [5].
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WMNs have a relatively stable topology except for
occasional node failures or additions. Practically all the traffic
flows either to or from a gateway, as opposed to ad hoc
networks where the traffic flows between arbitrary pairs of
nodes. Gateways would be connected directly to the fixed
network and therefore constitute traffic sinks and sources to
WMNs. Therefore, strategically placing and connecting the
gateways to the wired backbone is critical to the management
and efficient operation of a WMN.

The analysis of WMN scalability is based on the following
scaling relationships: traffic increases with the number of
nodes, and traffic also increases with the distance over which
each node wishes to communicate (i.e. due to packet
forwarding). In [6], Li et al. showed that 1, the capacity
available to each node (i.e. the rate at which packets are
originated), is bounded by

C
A< A

?
r
where C is the total one-hop capacity of the network, n is the

number of nodes, L is the expected path length and r is the
fixed radio transmission range such that L/r is the minimum

number of hops to deliver packets.

The above inequality shows that as the expected path length
increases, the bandwidth available for each node to originate
packets decreases. Therefore, the network scales better when
the traffic pattern is local. That is, each node sends only to
nearby gateways within a fixed radius, independent of the
network size. The expected path length clearly remains
constant as the network size grows. Hence, for optimal
performance, the WMN should be divided into disjoint
clusters, covering all nodes in the network. Within each
cluster, the cluster-head would serve as the gateway,
connected to the wired backbone.

A tree-based routing scheme would easily allow flows
aggregation and would minimize overhead, ensuring an
optimal utilization of bandwidth [7]. Hence, a spanning tree
rooted at the gateway can be used for traffic forwarding. Each
node is mainly associated to one tree, and would attach to
another tree as an alternative route in case of path failure.

For operational considerations, the gateway placement
problem should take into account the Quality of Service (QoS)
requirements such as delay and bandwidth. In a multihop
network, significant delay occurs at each hop due to
contention for the wireless channel, packets processing and
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queuing delay. The delay is therefore a function of the number
of communication hops between the source and the gateway.
The delay constraint is translated into an upper bound R on the
cluster radius, or a maximum depth R of the spanning tree
rooted at the gateway.

Bandwidth requirements are of two forms. First, the total
traffic inside each cluster is bounded by the capacity of the
gateway, based on its connectivity to the internet and its
processing speed. This requirement is translated into an upper
bound on the cluster size S, assuming each AP generates an
equal amount of one unit of traffic.

Guaranteeing a throughput for individual flows in a
multihop wireless network is more challenging. For
convenience, we assume a multi-channel WMN where
interfering wireless links operate on different channels,
enabling multiple parallel transmissions. The bottleneck on
throughput is therefore reduced to the load of congested
intermediate wireless links. Since traffic is aggregated and
forwarded by intermediate APs, we refer to the load on
individual wireless links as relay load L in unit of traffic.
Therefore, the throughput requirement is translated to an
upper bound on the relay load equal to the capacity of
individual wireless links in unit of traffic.

In this paper, we address the problem of gateway placement
in a WMN, aiming at placing a minimum number of gateways
while ensuring the QoS requirements discussed above. We
present a polynomial time near-optimal algorithm to divide the
WMN into clusters of bounded radius under relay load and
cluster size constraints.

The contribution of this work is the design of a novel
algorithm consisting of recursively computing minimum
weighted dominating sets for placing gateways in a WMN,
while ensuring the above QoS requirements.

The rest of this paper is organized as follows. Section 2
presents an overview of related works. Section 3 describes the
network model, presents the gateway placement problem and
provides its ILP formulation. Section 4 presents a detailed
description and analysis of the recursive dominating set
algorithm with QoS constraints. Experimental analyses and
comparison to alternative approaches are performed in Section
5. Section 6 concludes this paper.

Il. RELATED WORK

Our work inherits two major concepts from the literature:
the capacity facility location problem (CFLP); and clustering
and hierarchical routing in ad hoc networks.

The gateway placement problem could be considered as an
instance of the more general CFLP problem which has been
studied in the fields of operations research and approximation
algorithms. In the past several years, a lot of work has been
done on the design and analysis of approximation algorithms
[8] for two facility location problems: the uncapacitated
facility location problem [9], and the k-median problem [10].
In those techniques, distance is expressed in terms of
Euclidean-distance (relying on the triangular inequality) rather

than in terms of hop-count, and consequently an upper bound
on the relay load is not considered. In addition, there is no
abstraction of a cluster or constraints on the cluster radius
which is a necessary factor in placing gateways.

There have been numerous studies on designing
hierarchical routing architectures for ad hoc networks.
Routing, based on a Connected Dominating Set (CDS)
forming a spine to relay routing information and data packets,
is a typical technique in MANETs [11] [12] [13]. The
approximation algorithms developed to solve the CDS
problem are not suitable in our context: simply relaxing the
problem of connecting cluster-heads leads to non-optimal
solutions. In addition, the proposed schemes are concerned
with 1-hop clustering, which defeats the purpose of WMN.

Other works have proposed k-hop clustering algorithms
[14] [15] but none of them satisfy all the requirements of our
clustering problem and rarely present a guarantee in
comparison to the optimal performance.

To date and to the best of our knowledge, very few schemes
have been proposed to integrate the WMN with the wired
backbone.

In [16], Wong et al. addressed the gateway placement
problem in two separate settings: either minimizing
communication delay or minimizing communication cost. For
each setting, they propose different statistically tuned
heuristics, using the same strategy: at each step they decide
which of the candidate gateways will be eliminated from
further consideration. QoS constraints in terms of bounds on
the relay load and cluster size are not considered.
Furthermore, the proposed approximation algorithm gives no
guarantee on the optimality of the solution. The additional
QoS constraints considered in this paper make the problem
more challenging.

In [17], Chandra et al. addressed the problem of gateway
placement, aiming at minimizing the number of gateways
while guaranteeing AP's bandwidth requirements. They
considered the problem as an instance of the network flow
problem, allowing multipath routing. However, when
constraints on communication path length are imposed, the
proposed greedy heuristics leads to non-optimal solutions and
hence no guarantee on performance. In addition, the iterative
greedy approach makes the load of the gateways unbalanced,
since gateways are placed whenever others are fully served.
Finally, a clustered view of the WMN is not considered,
making the design less suitable to our context.

The most relevant work to ours is the one in [18]. Bejerano
successfully adopts a clustered view of the WMN and used a
spanning tree rooted at each clusterhead (i.e. gateway) for
message delivery. Bejerano breaks the problem of clustering
and ensuring QoS into two subproblems. The first one seeks
to find a minimal number of disjoint clusters containing all the
nodes subject to an upper bound on clusters' radius. The
second one considers placing a spanning tree in each cluster,
and clusters that violate the relay load or cluster size
constraints are further subdivided. In this paper, we consider
the combined problem where the spanning tree and cluster
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coverage evolve in parallel as long as QoS requirements are
satisfied. We show that the number of gateways required by
our algorithm, subject to the same QoS requirements, is
reduced by almost half in some cases, thus leading to a
significant saving in deployment cost.

I1l. SYSTEM DESCRIPTION

A. Network Model

We consider the problem of gateway placement in the
context of Wireless Mesh Networks (WMN). A WMN is
represented by an undirected graph G(V,E), called a
connectivity graph. Each node veV represents an Access
Point (AP) with a circular transmission range of 1 unit. The
neighborhood of v, denoted by N(v), is the set of nodes
residing in its transmission range. A bidirectional wireless link
exists between v and every neighbor ueN(v) and is
represented by an edge (u,v) eE. The number of neighbors of a
vertex v is called the degree of v, denoted by &(v). The

maximum degree in a graph G is called the graph degree
AG)=A.

The distance, denoted by d(u,v), between two nodes u and v
is the minimum number of hops between them. The radius of
a node v in G(V,E) is the maximum distance between v and
any other node. The radius of G is hence defined as the
minimum radius in the graph. On the other hand, the diameter
of G is the maximum distance between two arbitrary nodes (or
the maximum radius).

For computational purposes, we use an adjacency matrix to
represent the connectivity graph. The adjacency matrix of
G(V,E) is a matrix with rows and columns labeled by the
graph vertices V, with a 1 or 0 in position (m,n) according to
whether v,, and v, are directly connected or not. For the
undirected graph G, the adjacency matrix is symmetric.

B. Problem Description

In this paper we address the efficient integration of the
WMN with the wired network for Internet access, while
ensuring QoS requirements. This consists in logically dividing
the WMN into a set of disjoint clusters, covering all the nodes
in the network. In each cluster, a node would serve as a
gateway, connected directly to the wired network, and serving
the nodes inside the cluster.

In each cluster, a spanning tree rooted at the gateway is
used for traffic aggregation and forwarding. Each node is
mainly associated to one tree, and would attach to another tree
as an alternative route in case of path failure.

For operational reasons, the gateway placement or
clustering problem is subject to QoS constraints. As discussed
earlier, the QoS constraints are translated into the following:
an upper bound R on the cluster radius, an upper bound S on
the cluster size and an upper bound L on relay traffic. The
gateway placement problem therefore consists in logically
dividing the WMN into a minimum number of disjoint
clusters that cover all nodes and satisfy all three QoS
constraints.

C. ILP Formulation

We formulate the placement problem as an integer linear
program. Let N=V be the set of APs and G < V be the set of
gateways. G is a subset of V as is the case in Nortel solution
[3]. We introduce a binary variable y; to indicate whether a
gateway ieG is set up. To represent gateways allocation for
APs, we define another binary variable x;; which takes the
value of 1 whenever AP jeN is assigned to gateway icG. h;;
represents the minimum number of hops between AP jeN and
gateway ieG. zﬁj is a binary variable indicating whether the
path from i to j passes through node k. Recall that L and S are
upper bounds on the relay load and cluster size constraints,
respectively. Our objective function is formulated as follows:

min >y,

ieG;
Subject to:
(@ VjeN :qu =1
ieG
(b) VieN,ieG:y, >x;
© WieN:Yh,-x, <R
ieG

(d) VieGkeN:) zf;<L

L=
jeN

(€) VieG:) x,;<S
jeN
(f) VieG:y, c{0.3
(@ VieN,ieG:x ;{05

(h) VjeN,keN,ieG:Zik‘j {0,1}

Condition (a) denotes that each AP is assigned to one and
only one gateway. Inequality (b) implies that a gateway has to
be set up before being assigned APs. Inequality (c) ensures
that there exists a path with at most R hops between the AP
and the assigned gateway. This constraint implies that a
cluster of bounded radius can be formed. Inequalities (d) and
(e) provide an upper bound on the relay load and cluster size
constraints, respectively. The last three conditions indicate
that y;, x;;, and Zik,j are binary variables.

By reducing the minimum set cover problem to the gateway
placement problem given by the ILP above, one can show that
it is NP-hard to find a minimum number of gateways. In
practice an LP solver, such as Matlab or CPLEX, can only
handle small-sized networks under the proposed model due to
the fast increase in the number of variables and constraints
with the network size. It will not be possible to solve the ILP
for large networks due to memory constraints.

In the next section, we present a polynomial time near-
optimal approximation algorithm to solve the placement
problem that ensures the QoS requirements.
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IV. RECURSIVE DOMINATING SET ALGORITHM

A. Dominating Set Problem

The core algorithm consists of recursive approximations of
the minimum Dominating Set (DS) problem. The
corresponding decision problem of DS generalizes the NP-
hard Vertex Cover problem and is therefore also NP-hard
[19].

Since the minimum DS problem is NP-hard, we rely on a
greedy approach for approximation. Approximating a DS
using the greedy approach was first proposed by Chvatal [19]
for a more general model. The dominating set problem could
be formulated as follows:

Definition 1: A dominating set of a graph G=(V,E) is a
subset C < V of the nodes such that for all nodes veV, either
veC or a neighbor u of visin C.

B. Algorithm Description

Our algorithm consists of recursively computing minimum
dominating sets: at iteration' i, we compute a minimum

dominating set V'of the graph G'™* =V} E"™) resulting
from the previous iteration.

Algorithm 1: Recursive_DS (V 0, R, L, S)

Adj = Adjacency_matrix(V,i)
U<«V
C«|]

While U #[ |
V = Greedy_selection (Adj)
S'=vlU Neighbors (V, Adj)
SP_tree = Build_tree(V,S", Adj)
if Satisfy_Qos(SP_tree,L,S)

C«CUv
U«UuU-S'
Adj = Adjacency_matrix (U , i)

© ® N o a0 & 0 DNPE

I
N PO

else
//Restricting the neighbors of V in Gi
//such that S' does not occur again
Modify_adjacency matrix (V, Adj )

B
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end

[y
~

. end
. if Cluster_radius(i+l) >R

[EY
[or]

return C

N
So©

. end
. return Recursive_DS(C, i+1R,L, S)

N
[y

The proposed algorithm, Recursive_Ds(V,i,R,L,S),
performs recursive calls. At each iteration, V represents the

! In this paper, iterations refer to recursive iterations. For example, iteration
i refers to the i"" recursive step, or recursion.

dominating set of the previous iterations, i represents the
iteration number, and R, L and S represent the upper bounds
on cluster radius, relay load and cluster size respectively.

As shown at line 1, we first compute the adjacency matrix

of graph G' =(vV',E'), which is an internal representation of

the connectivity graph G' consisting of the dominating set
V' of the previous iteration i-1. At iteration i, two nodes v and

ueV' are adjacent if they are i hops away. The rationale is
presented in the next section.
The while loop from line 4 to 17 selects iteratively the

node veV' that covers the greatest number of remaining
nodes that are uncovered in G'. The algorithm works as
follows. The set U contains, at each stage, the set of remaining
uncovered nodes. The set C contains the cover being
constructed (i.e. the dominating nodes). Line 5 represents the
greedy decision-making step. A node v is chosen that covers
as many uncovered nodes as possible (with ties broken
arbitrarily). Line 6 shows the resulting subset S’ composed of
v and its neighbours. After v is selected, the nodes in S* are
removed from U, and v is placed in C (line 9 and 10). When
the algorithm terminates, the set C contains the set of
dominating nodes at level i.

Lines 18-20 constitute the stopping criteria of the recursive
calls. If the cluster radius of the next iteration is larger than R
we return the set C which constitutes the set of required
gateways, satisfying the QoS requirements. Otherwise, we call

the function Recursive_Ds(V,i,R,L,S), where C would

represent VV'** for the iteration i+1.

However, before proceeding and adding v to the list of
dominating nodes, we check whether a cluster rooted at v,
including S’, is feasible. Recall that the original network is

represented by G° =(V° E°) and clustering constraints in

term of L and S should be applied to G°. We note that each
node veV' indexes (i.e. remembers) all the nodes in VO it
covered in previous iterations, those nodes shall be referred to

as cover(u); such that | cover(vi):v0 .
viev!

We refer to a cluster as feasible if a spanning tree, rooted at
V and covering all nodes in cover(S”), satisfies the relay load
and cluster size constraints. At line 7, we build a spanning tree
and we check if the constraints are satisfied, at line 8. If they
are satisfied, we add v to the list of dominating nodes C, and
remove S’ from U. Otherwise, the cover(S’) is too large and
we remove an edge from E' between v and another neighbour
in V' by modifying Adj such that the combination S of v does
not occur again. This approach gives the chance to different
feasible clusters to form before moving to the next iteration
and increases the coverage of clusters. Hence, whenever the
cluster radius reaches the upper bound R, all the clusters are
guaranteed to satisfy the cluster size and relay load
constraints.

Determining feasibility before reaching the maximum
radius size provides flexibility in terms of re-clustering with
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Figure 1: Original network consisting of 93 nodes. We aim to place a Figure 2: The resulting cluster-heads constitute V* , as a result of the first
minimum number of gateways satisfying the cluster radius R=6 iteration. This consists of minimal dominating set over G(V,E) of Fig. 1.
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Figure 6: This is the last iteration, as the clusters radius equals the upper
bound R=6. [V?=2, hence the recursive algorithm places 2 gateways at
the labeled positions.

Figure 5: The graph G*(V2,E?)
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neighboring nodes at intermediate iterations. We will show in
Section V that this approach leads to a much lower number of
required gateways, compared to other schemes which check
for the cluster size and relay load constraints after forming
clusters of radius R.

C. Algorithm Illustration

In this section, we illustrate the above algorithm by
showing its intermediate steps. We consider a random
topology consisting of 93 nodes in an area of 15x15, as shown
in Fig. 1. The algorithm is implemented in Matlab. The goal is
to divide the network into a minimum number of disjoint
clusters subject to an upper bound on the radius R=6. Relay
load and cluster size constraints are relaxed for the sake of
simplicity.

The first iteration consists in finding a minimal dominating
set over G(V,E). Fig. 2 shows the 22 clusters, V*, resulting
from the first iteration. The index at each cluster-head
represents the order chosen by the greedy algorithm at line 5.
The order reflects the idea of selecting the nodes which can
cover a maximum number of uncovered nodes first. We note
that the number of nodes [V*|=22 moving to the next iteration
is considerably lower than the original [V°=93.

Fig. 3 shows the graph G*(V*,E?). Recall that two vertices in
G' are connected if they are 2-hops away in the original
network G. The indices at each v'eV' in Fig. 3 represent the
weight computed by the greedy algorithm, at line 5, which is
the degree of the node observed in Fig. 2, and consequently
shows the order in which they were selected.

Fig. 4 consists of finding a minimal dominating set V2 over
G*(V*,E") shown in Fig. 3. The index at each cluster-head
shows the order in which v2eV? were selected. Fig. 5 shows
the resulting graph G*(V2,E?). Since any two nodes in G are at
least 3-hops away, an edge (u®,v?)eE? exists if u? and v’eV?
are 3-hops away. Finally, Fig. 6 shows the resulting V° at the
third iteration. The algorithm stops since the cluster radius of
the next iteration exceeds the upper bound R. The next section
will present an analytical analysis of the algorithm,
formulating the relation between the maximum cluster radius
r; and iteration i; the analysis will therefore justify the reason
why the algorithm stops at iteration 3, given R=6.

D. Algorithm Analysis

In this section, we will denote G°(V°,E®) as simply G(V,E).
From the definition of dominating sets, we obtain the
following corollary where V' denotes the dominating set of
the first iteration:

Corollary 1: For any node veV, there exists a node v'eV*
such that d(v,v})=1 or v=v".

The second iteration consists of finding a dominating set
over V1. The vertices ve V" are at least 2 hops away, therefore
two vertices in V' are adjacent if they are 2 hops away. In
other words, the graph G*(V*,E?) sets up a connection between
two vertices in V! if they are 2 hops away in the original graph
G. At iteration i=2, Adj will be a square matrix of size [V*|x|V?|
and reflects the connectivity graph of G*. At the end of

iteration 2, a set V2 will result and forms a dominating set over
VL. V2 will constitute a cover that can reach any v'eV! in 2-
hops, leading to the following corollary:

Corollary 2: For any node v'eV?, there exists a node v2eV?
such that d(v*,v*)=2 or v'=v*.

From Corollary 1 and 2, we can derive a bound on the
distance from any node veV to v2eV?. Since d(v;,;) represents
the shortest distance between v; and v;, we can write
d(v,v?) < d(v,v") + d(v'v?). Given that the distance between a
node and itself is zero, we get d(v,v!) < 1 and d(v'v?) < 2 for
all veV, vteV?, and ve V2. Hence, d(v,v%) < 3.

Corollary 3: For any node veV, there exists a node v?eV?
such that d(v,v?) = 3.

We now present a generalization. Since the distance
between any two nodes belonging to the dominating set of
iteration i is at least i+1 hops, two nodes will be considered
connected at iteration i+1 if they are i+1 hops away. Recal
that v=v°, we derive the following theorem by recursion:

Theorem 1: For any node veV, there exists a node v'eV'
such that d(v,v)) < d(v,v') + i. Reducing the term d(v,v'%)
further recursively and given that d(v,v")=0, we obtain the

expanded form: d(v,v') < (i (i +1)><%) .

Consequently, our algorithm will be able to guarantee an
upper bound on the cluster radius of r; at iteration i. Recall
that r; is the maximum distance d(v,v) at iteration i. In order to
hit a target radius size, one should set the initial value for r;
adequately. Hence a general formula for r; can be written as:

r; :(i x (i +1)><%)+(r1—1)><i .
For example, if we set the value of r; to 1, r; would take the
following values at consecutive iterations:

i=1234,..
r,=136,10,...
Similarly, for r;= 2, we obtain
i=1234,..
r=252914..

Assuming a spanning tree would be built in each cluster
rooted at the gateway, r; would serve as a guarantee for the
upper bound on the depth of the tree.

The maximum number of iterations that can be reached
corresponds to the scenario where there is only one remaining
gateway serving the whole network. In the best case,
assuming the gateways are optimally placed, the iterations will
proceed until r; exceeds the radius of the network. On the
other hand, assuming the worst placement of gateways, the
iteration will proceed until r; exceeds the diameter of the
network. For a definition of a network radius and diameter,
please refer to Section I11-A.

E. Algorithm Performance

In this section, we study the run time and the approximation
factor of our algorithm. The body of the while loop can be
implemented to run in time O(]V|). We need O(|V]|) to select
the node with the highest degree, at line 5. Similarly, O(|V]) is
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required to set up a spanning tree [20], and to check whether
the QoS constraints are satisfied.

On the other hand, the while loop will iterate a maximum
of |V| times until all |V| nodes are covered. To show that, we
assume first that F is the family of possible covers S’. The
number of iterations of the while loop is bounded by
min(|V|,|F[). However, in our context, each AP and its
neighbours form a possible cover S’, since each AP is a
candidate dominating node. The bound is therefore reduced to
min(|V|,|F)=min(|V|,|V])=|V|. The method
Recursive_Ds(V,i,R,L,S) can be therefore implemented to

run in O(|V]).

Theorem 2: The gateway placement algorithm can be

implemented to run in time less then 2R ><O(|V|2), where R

is the required upper bound on the cluster's radius.
Proof: The gateway placement algorithm have a run time of

imaxxo(|v|2), where i, is the number of performed

recursive iterations. In the previous section, we have shown
that

h :[ix(i+1)><%}+(r1—1)><i

:£+l+(r1—1)><i
2 2

. . . 22
Since i and ry are positive numbers, r, > '4 . Hence, we get

i<2r and i, <+/2R .

In addition to running in polynomial time, our algorithm
can be shown to provide a near-optimal solution, in terms of
the number of gateways placed.

Theorem 3: The recursive greedy dominating set is a
polynomial-time  p(n) -approximation  algorithm, where
p(N)=TTH(4;), A; is the graph degree at iteration i of G', and
H( ) is the harmonic function.

We refer to Chvatal [19] for the proof.

F. Algorithm Enhancement

In this section, we refine our algorithm and propose a
weighted recursive algorithm. We compute a weight w' to each
node V' in order to effectively select dominating nodes at each
iteration. The weight would reflect the coverage of a node V'
in the original network G(V,E) and the relative distance to the
nodes it covers. The initial algorithm uses a binary adjacency
matrix, making the node’s degree in G'(V'E"), instead of
G(V,E), the major contributor to its weight in the greedy
selection step, line 5.

The weighted recursive algorithm uses a weighted
adjacency matrix to represent the connection state between

vertices in G'(V'E"). vi, and v} have a non-zero weight wf, ,

if vl and V! are adjacent in G'. The weighted adjacency
matrix is not symmetric because the vertices have dominance
relationship over each other.

The weights are calculated as follows:

0, ifd(v\,,v\)>i hops
Wi = iani‘l, ifm=n
’ |

Wi ifm=n
and
Wri\ =X W;n n
vn o
where the initial conditions are
W ) oif d (v}, V) > 1 hops
1, otherwise

W3 = T W = 5(vpy), the node degree
vn

The following is an insight to the calculation of the weights.
Given the nature of the spanning tree, if a node v,in dominates

vl at iteration i, it would cover all the nodes covered by v/,

from iteration i-1 down to iteration 1. It is therefore beneficial
for every node to carry a weight corresponding to the number
of nodes it covered at previous iterations.

However, the weight of a node Vv, is not simply the sum of
the nodes it covers. Instead, it is a weighted sum, inversely
proportional to the distance of the nodes to v!,. That is, a node
farther away will have a lower contribution to the total weight
of node vﬁ] since it negatively impacts the relay load
constraint. The notion of distance is incorporated through
multiplying W' by 14 The weight is therefore inversely

proportional to the iteration number, suggesting that nodes
covered by v/, at iteration i are farther than nodes covered by

v! at earlier iterations.

WrL corresponds to the weight used and calculated by the
greedy step to select a dominated node vy, at Line 5. The
weight WrL is stored with v, in C, at Line 9. It is then used in
the next iteration to populate the weighted adjacency matrix
w};}, , which in turn is used by the greedy selection step.

The idea is challenging but the implementation is very

simple as no further calculations are required other than the
weight originally calculated in the greedy steps at iteration i-1

and carried forward by w!, to iteration i.

V. EXPERIMENTAL ANALYSIS

A. Alternative Algorithms

In this section, we compare the performance of the basic
and weighted recursive algorithms to two other alternatives:
Iterative Greedy Dominating Set and Augmenting Placement.

1) lIterative Greedy Dominating Set

We compare our placement algorithms to the scheme
proposed by Bejerano in [18]. The idea in [18] is to break the
problem into two sub-problems and to solve each one
separately. The first sub-problem seeks to find a minimum
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number of disjoint clusters that contains all the nodes and
satisfy the radius constraints. In the second one, each cluster is
further divided into sub-clusters if either the relay load or
cluster size constraints are violated.

The iterative greedy dominating set heuristic [18] [19] is
used for clustering, in the first sub-problem. This approach
looks for the minimum dominating set of the power graph
GR(R ER). It consists of selecting iteratively the node whose
R-neighborhood contains the greatest number of remaining
nodes that are uncovered.

2) Augmenting Placement

Similar to [17] and [16], the augmenting placement
represents another alternative for clustering. The algorithm is
similar to the iterative greedy placement with respect to its
internal procedure; however, it does not make greedy
decisions regarding the next placement of additional
gateways. Any placement providing subsequent coverage to
uncovered nodes is considered.

B. Performance Evaluation

We evaluate the performance of the four different
placement algorithms using various QoS parameters in terms
of cluster size S, relay load L and radius size R. The
algorithms are evaluated according to the number of required
gateways or clusters they produce.

For each setup, we generate 25 different random topologies
and use the average to report performance results. Each
topology consists of 175 nodes placed in an area of 10x10.
The communication radius is set to 1, and the minimum
distance separating any pair of nodes is set to 0.6 because
placing APs very close to each others is not common in
practice. Transmission pattern is assumed to be circular and
Euclidean distance is used to decide whether two nodes are in
communication range. After the random topology is
generated, a post processing step is performed to ensure that
the resulting graph is connected. We set a threshold for that
purpose. If the ratio of disconnected nodes is less than the
threshold, the disconnected nodes are removed. Otherwise, we
generate a new topology.

1) Effects of Relay Load
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Figure 7: Effects of relay load constraints. Cluster Radius=6, Cluster Size=NaN

We start by studying the effect of relay load constraint on
gateways placement. We fix the upper bound on cluster radius
to 6 and relax the constraint on the cluster size. As shown in
Fig. 7, the effect of relay load constraints is mainly
pronounced when it is very limited; for L=4, the iterative
greedy and augmenting algorithms place twice the number of
gateways required by the recursive algorithms.

On the other hand, as the constraint L on the relay load is
relaxed, the differences in performance shrink. In addition,
when the upper bound L on the relay load exceeds 20, the
number of required gateways by each algorithm remains
constant; the network is then clustered according to the limit
imposed by the upper bound on cluster radius. We can clearly
see that the weighted recursive algorithm performs best for all
values of L, followed by the basic recursive algorithm.

2) Effects of Cluster Size
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Figure 8: Effects of the cluster size constraints. Cluster radius = 6, Relay Load
=NaN

Next we study the impact of cluster size on the number of
required gateways by each algorithm. The relative
performance of the four algorithms is consistent with the
previous analysis.

We can clearly see in Fig. 8 that the iterative greedy and
augmenting placement are heavily penalized when the cluster
size constraint is strict (i.e. S is small). As S decreases, the
number of required gateways increases exponentially since
each cluster is subdivided further as long as the cluster size
constraint is violated. A large number of small sub-clusters
results without the possibility to merge with neighbouring
clusters. The sub-clustering effect constitutes the major pitfall
for the iterative algorithms.

On the other hand, the number of gateways required by the
recursive algorithms increases almost linearly as the constraint
on the cluster size becomes stricter. The reason is that clusters
have the chance to merge with other clusters at earlier
iterations in order to form feasible clusters. In contrast, the
iterative algorithms form large clusters first and then
subdivide them individually into feasible sub-clusters.

As shown in Fig. 8, our recursive algorithms consistently
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yield a lower number of gateways than the iterative
algorithms. For example, for S=6, they require only 50% of
the number of gateways placed by the iterative algorithms.

3) Effects of Cluster Radius

70

60 4

50 q

40 {

30

Number of Gateways

20 -

10 4

0

1 2 3 4 5 6 7 8 9 10

Cluster Radius Constraint (R)

—e— Weighted Recursive —m— Basic Recursive —a— lterative Greedy —e— Augmenting ‘

Figure 9: No relay load or cluster size constraints: L = NaN, S = NaN.
Comparing clustering algorithms.

Next we compare the performance of the four algorithms as
a function of cluster radius R. First, we illustrate their
performance with no additional relay load or cluster size
constraints. In such scenario, the performance reflects only the
embedded clustering algorithms. As shown in Fig. 9, the four
algorithms show relatively similar performance in terms of
clustering alone.
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Figure 10: With relay load constraint: L=6

However, when adding a relay load constraint such as L=6,
the performance of the four algorithms differs significantly as
shown in Fig. 10. A similar performance to Fig. 10 is obtained
when considering the addition of cluster size constraint
instead of relay load constraint.
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Figure 11: Weighted Recursive Algorithm: effect of the relay load L
constraint on the performance, as a function of cluster radius R.

For further illustration, we plot separately the performance
of the weighted recursive algorithm and the iterative greedy
algorithm while varying the relay load constraint. We pick
those two algorithms to contrast the recursive to the iterative
approach. We observe in Fig. 11 that the recursive algorithm
reacts smoothly and consistently as the relay load constraint L
becomes more restrictive. Intuitively, for a given relay load L,
as we increase the upper bound on cluster radius R, we expect
the number of resulting clusters to decrease and then stabilize
at a certain value (representing the relaxation of constraint R).
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Figure 12: Iterative Greedy Algorithm: effect of the relay load L constraint on
the performance, as a function of cluster radius R.

However, the iterative algorithm, as shown in Fig. 12,
performs inconsistently as the upper bound R on the cluster
radius increases. Surprisingly, if we consider L=4 in Fig. 12,
the algorithm places more gateways for a cluster radius
constraint of 6 than a radius constraints of 3 or 4. Such
unexpected performance of the iterative greedy algorithm had
been pointed out in [18], however interpreted differently.

This problem occurs whenever the cluster radius is big
enough to accommodate a large number of nodes in the initial
clustering process. However, at a later stage, whenever
various constraints are imposed, the iterative algorithm
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subdivides the clusters excessively to satisfy those constraints.
Consequently, a large number of small sub-clusters is
obtained.

This problem is absent in the proposed recursive algorithms
because clusters are not formed initially unless they satisfy all
QoS constraints.

We note that the two proposed recursive algorithms
perform better than the two other alternatives, as shown in
Fig. 10. Specifically, the weighted recursive algorithm
performs best in all scenarios.

V1. CONCLUSION AND FUTURE WORK

In this paper, we elaborated on the importance of clustering
for the efficient operation of WMNs. We presented an ILP
formulation for the gateway placement problem and showed
that it is NP-hard. Then, we proposed a novel recursive
algorithm for clustering the WMN within a bounded radius,
while ensuring relay load and cluster size constraints. We
showed that our algorithm runs in polynomial time and yields
near-optimal results. Next, we compared the performance of
the recursive algorithm to other alternatives. We showed that
it places up to 50% less gateways, and exhibits smooth and
consistent performance when subject to various QoS
constraints.

The main advantage of the proposed recursive algorithms is
that clusters have the chance to merge with other clusters at
earlier iterations in order to form feasible clusters satisfying
all QoS constraints. No cluster is formed unless it satisfies all
QoS constraints. In contrast, the existing iterative algorithms
consider first clustering the WMN with regard to the upper
bound on cluster radius R. At a later stage, they subdivide the
clusters individually until the remaining QoS constraints are
satisfied. This results into a large number of small clusters
without the possibility to merge with neighboring clusters.

The followings are possible directions for future work.
First, taking into account wireless interference would provide
a better assessment of the capacity available for APs to
generate traffic, although would add complexity to the
algorithm. Second, it would be interesting to consider a
decentralized version of the algorithm’s design, given the
locality of computations. Third, it is also interesting to study
the impact of topology changes, and whether it introduces any
significant ripple effect.
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