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Abstract— Flexibility and efficiency are the prime requirements
for any P2P search mechanism. Existing P2P systems do not
seem to provide satisfactory solution for achieving these two
conflicting goals. Unstructured search protocols (as adopted in
Gnutella and FastTrack) provide search flexibility but exhibit
poor performance characteristics. Structured search techniques
(mostly Distributed Hash Table (DHT)-based), on the other hand,
can efficiently route queries but support exact-match semantic
only.

In this paper we have defined Distributed Pattern Matching
(DPM) problem and have presented a novel P2P architecture,
named Distributed Pattern Matching System (DPMS), as a solu-
tion. Possible application areas of DPM include P2P search, ser-
vice discovery and P2P databases. In DPMS, advertised patterns
are replicated and aggregated by the peers, organized in a lattice-
like hierarchy. Replication improves availability and resilience
to peer failure, and aggregation reduces storage overhead. An
advertised pattern can be discovered using any subset of its 1-bits.
Search complexity in DPMS islogarithmic to the total number of
peers in the system. Advertisement overhead and guarantee on
search completeness is comparable to that of DHT-based systems.
We have presented mathematical analysis and simulation results
to demonstrate the effectiveness of DPMS.

I. I NTRODUCTION

The generic problem of pattern matching and its variants
have extensively been studied in Computer Science literature.
In this paper we have defined Distributed Pattern Matching
(DPM) as a variant of the generic pattern matching problem
with two additional constraints. First, we are interested in
Bloom-filter [5] based pattern matching (i.e., subset matching),
and second, we assume that the patterns are scattered among
the peers of a P2P overlay network (see Fig. 1). Given a search
patternQ, the goal is to find the peer(s) containing a pattern
(sayP ) matchingQ. P matchesQ if P∧Q = Q; i.e., the 1-bits
of Q is a subset of the 1-bits ofP . We assume a pattern to be
a bloom filter (a couple of hundred bits in length) constructed
by hashing the properties of a shared object (such as a file or
a service).

Problems that can be mapped to DPM include a) partial-
and multi-keyword search for content sharing P2P systems, b)
partial service description matching for service discovery sys-
tems, c) data record pre-scanning for distributed P2P database
systems, d) molecular fingerprint matching in some envisioned
distributed environment,etc.

In this paper we have presented a novel P2P system, DPMS
(Distributed Pattern Matching System), for efficiently solving
the DPM problem. We have also demonstrated the application
of DPMS in solving partial keyword matching problem. We
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Fig. 1. The Distributed Pattern Matching (DPM) problem
have provided mathematical analysis and simulation results for
establishing the effectiveness of the proposed architecture.

DPMS achieves many desirable properties of both the
unstructured and structured P2P systems. Like unstructured
systems DPMS supports partial keyword matching, utilizes
the heterogeneity in peer capabilities, and does not place any
hard restriction on index/document placement. Like structured
systems, on the other hand, DPMS attains logarithmic bound
on search complexity and offers guarantee on search com-
pleteness and discovery of rare items. Advertisement traffic
in DPMS is comparable to that of DHT-based structured P2P
systems.

To our knowledge Distributed Pattern Matching (DPM)
problem has never been addressed by any research activity
in P2P context.1The index distribution architecture of DPMS
is unique and has been designed specifically to solve the
DPM problem. The novel aggregation scheme, proposed in this
paper, can effectively reduce storage overhead at the indexing
peers without incurring a significant decrease in query routing
performance. However, the use of bloom filter for representing
indices is not new. Many network applications use bloom
filters. A comprehensive list of such applications can be found
in [6].

The rest of this paper is organized as follows. Section II
highlights and compares the approaches related to DPMS.
The architecture and operation of DPMS are presented in
section III. Mathematical analysis of search complexity in
DPMS is provided in section IV. Experimental results and

1This work is an extension of our previous publication [3].
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concluding remarks are presented in section V and section
VI, respectively.

II. RELATED WORKS

Existing solutions for pattern matching [4], [10] in central-
ized environment, hold linear relationship with the number of
advertised patterns (ortext according to pattern-matching lit-
erature) to be matched. This implies flooding for an equivalent
solution to the DPM problem.

From architectural point of view, Secure Service Discovery
Service (SSDS) [11] is the closest match to DPMS. Like
DPMS SSDS uses Bloom filter and aggregation. However,
index distribution in SSDS is through a tree-like hierarchy
of indexing nodes, in contrast to the lattice-like hierarchy
used by DPMS. SSDS does not use any replication in the
indexing hierarchy. Higher level nodes in SSDS index tree
handle higher volume of query/advertisment traffic and the
system is more sensitive to the failure of these nodes. Another
major drawback of SSDS, compared to DPMS, lies in its
aggregation mechanism. SSDS uses bitwise logical-OR for
index aggregation. The aggregation scheme adopted in DPMS
(explained in section III-C) retains unchanged bits from con-
stituent patterns and provides more useful information during
query routing.

Unstructured systems ([2],[1]) identify objects by keywords.
Advertisements and queries are in terms of the keywords
associated with the shared objects. Structured systems, on the
other hand, identify objects by keys generated by applying
one-way hash function on keywords associated with an object.
Key-based query routing is much efficient than keyword-based
unstructured query routing. The downside of key-based query
routing is the lack of support for partial-matching semantics.
Unstructured systems, utilizing blind search methods (like
flooding[2] and random-walks [15]), can easily be modified to
facilitate partial-matching of queries, and in general to solve
DPM problem. Due to the lack of proper routing informa-
tion, the generated query routing traffic would be very high.
Besides, there would be no guarantee on search completeness.

Many research activities are aimed at improving the routing
performance of unstructured P2P systems. Different routing
hints are used in different approaches. In [7] routing is biased
by peer capacity; queries are routed to peers of higher capacity
with higher probability. In [23] and [21] peers learn from the
results of previous routing decisions and bias future query
routing based on this knowledge. In [9] peers are organized
based on common interest. Restricted flooding is performed in
different interest groups. Many research papers ([7], [23], [13],
etc. ) propose storing index information from peers within a
radius of 2 or 3 hops on the overlay network. All of these
techniques reduce volume of query traffic to some extent, but
do not provide guarantee on search completeness.

Bloom filter is used by many unstructured P2P systems for
improving query routing performance. In [13] each peer stores
Bloom filters from peers one or two hops away. Experimental
results presented in [13] show that logical OR-based aggrega-
tion of Bloom filters is not suitable for aggregating information
from peers more than one hop away. In [18] each peer store a

list of Bloom filters per neighbor. Theith Bloom filter in the
list for neighbor, sayM , summarizes the documents that are
i− 1 hops away viaM . A query is forwarded to the neighbor
with a matching Bloom filter at the smallest hop-distance. This
approach aims to find the closest replica of a document with
a high probability.

Schmidt et. al. [19] have presented an approach, named
Squid, for supporting partial keyword matching in DHT-
based structured P2P networks. They have adopted space-
filling-curves to map similar keywords to numerically close
keys. Squid supports partial prefix matching (e.g., queries
like compu* or net*) and multi keyword queries. Squid does
not support true wildcard matching for queries like*net*.
Another extension to the DHT-technique for solving partial-
keyword matching has been proposed in [12]. A keyword
can be fragmented intoη-grams, and eachη-gram can be
hashed and stored at the responsible peer. This approach can
solve partial keyword matching problem. However, solving the
generic DPM problem with this approach is not feasible.

In general DHT-techniques ([20], [17], [16], [24]etc. ) are
not suitable for solving partial keyword matching problem
(and DPM problem) for two reasons. Firstly, DHT-techniques
require to partition the key-space into non-overlapping re-
gions and to assign each region to a peer bearing an ID
from that region. But from pattern matching perspective it
is quite difficult to partition even one dimensional pattern
(or key) space into non-overlapping clusters, while preserving
closeness of patters in hamming distance. Secondly, DHT-
techniques cannot handlecommon keywords problem[14]
well. Popularη-grams like ”tion” or ”ing” can incur heavy
load on the peers responsible for theseη-grams, resulting into
unequal distribution of load among the participating peers.

III. D ISTRIBUTED PATTERN MATCHING SYSTEM (DPMS)

This section presents details on DPMS architecture. In this
section we will use the termspattern and index interchange-
ably, as patterns are used as indices for query routing.

A. Overview

In DPMS a peer can act as aleaf peeror indexing peer. A
leaf peer resides at the bottom level of the indexing hierarchy
and advertises its indices (created from the objects it is willing
to share) to other peers in the system. An indexing peer, on
the other hand, stores indices from other peers (leaf peers
or indexing peers). A peer can join different levels of the
indexing hierarchy and can simultaneously act in both the
roles. Indexing peers get arranged into a lattice-like hierarchy
(see Fig. 2) and disseminate index information using repeated
aggregation and replication.

DPMS uses replication trees (see Fig. 2a) for disseminating
patterns from leaf peers to a large number of indexing peers.
However, such a replication strategy would generate a large
volume of advertisement traffic. To overcome this shortcom-
ing, DPMS combines replication with lossy-aggregation. As
shown in Fig. 2b, advertisements from different peers are
aggregated and propagated to peers in the next level along
the aggregation tree.
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The structure of the indexing hierarchy and the amount
of replication are controlled by two system-wide parameters,
namely replication factorR and branching factorB. Patterns
advertised by a leaf peer are propagated toRl indexing peers
at level l. On the other hand, an indexing peer at levell
contains patterns fromBl leaf peers. Due to repeated (lossy)
aggregation, information content of the aggregates reduces as
we go up along the indexing hierarchy.

� � � � � � � � � 	 � 
 � � 
 � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � 
 � � � 	 � 
 � � 
 � � � � � � � � �  ! �  � "

� � � � � � � � � � � � � � � � � � � � � � � � # � �

� � � � � � � � � �

$ � % � � � � � � � � � � � � & � � � ' � � � � � � �

( � % � " )

( � % � " *

( � % � " +

( � � � �

, - � � � � �

. � � �  ! � � � � �  � � � / +

0 � � " �  � � � � � � �  � � � / *

Fig. 2. DPMS overview

The indexing hierarchy has three-fold impact on system
performance. Firstly, the indexing hierarchy evenly distributes
index information (and queries) in the highest level indexing
peers. This helps in load balancing the system and improves
fault tolerance. Secondly, peers can route queries towards
a target leaf peer without having any global knowledge of
the overlay topology. Finally, the indexing hierarchy helps in
minimizing query forwarding traffic. While forwarding a query
from a root peer to multiple leaf peers in the same aggregation
tree, shared path from the root peer to the common ancestor
of the target leaf peers is utilized.

B. Index/pattern Construction

DPMS uses Bloom filters [5] as indices. Bloom filter is
a space-efficient data structure used for set membership tests.
However, this space-efficiency comes at the expense of a small
possibility of false positive in the membership check operation.

The algorithm for Bloom filter construction is simple. A
Bloom filter is represented as an m-bit array. k different hash
functions are also required to be defined. Each of these hash
functions should return values within the range of{0, . . . , m−
1}. In an empty Bloom filter all of the m-bits are set to 0. To
insert an element (a string or keyword), it is hashed with the k
hash functions and corresponding k array positions are set to
1. To test set membership for an element, it is hashed with the
same k hash functions to get k array positions. If all of these
k-bits are set (i.e., 1) then with high probability the element is
a member of the set represented by the Bloom filter, otherwise
it is not. False positive probability for a membership test is

calculated asε =
(
1− (

1− 1
m

)nk
)k

, where n is the number
of elements inserted in the Bloom filter.ε is minimized when
k = ln 2 · (m/n). For example withm/n = 8 and k = 5,
ε ≈ 0.02.

A document in a traditional file-sharing P2P system is
associated with a set of keywords. In DPMS all the keywords

associated with a document are encoded in a single bloom-
filter. To facilitate wildcard matching, each keyword is first
fragmented intoη-grams (usually trigrams). Theseη-grams are
then inserted into the Bloom filter representing the document.
Query keywords are also fragmented intoη-grams (see Fig. 3)
and encoded into a Bloom filter. The 1-bits on a query should
be a subset of the set of 1-bits of any pattern that it should
match against.
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Fig. 3. Index construction example; query“ ∗visi∗man∗” matches advertised
names“invisible man” and “visible woman”

For a P2P service discovery system indices can be obtained
in a similar fashion, using attribute-value pairs instead of
keywords. Molecular fingerprint can be used as index for
some envisioned distributed system storing molecular structure
information.

C. Aggregates

An aggregate is obtained by combining two (or more)
different patterns (or aggregates). DPMS index distribution
and query routing architecture is independent of the under-
lying aggregation scheme. It is possible to plug-in different
aggregation schemes with DPMS. However, all of the peers
in a system must use the same aggregation mechanism. An
aggregation mechanism should have the following properties
to be compatible with the DPMS indexing hierarchy:

• The aggregation scheme should compress index infor-
mation obtained from child peers. Lossy compression is
allowed. Parameter control over the level of aggregation
if preffered.

• The aggregated form should retain original pattern infor-
mation (to some extent), making it possible to perform
pattern matching on the aggregates.

• Repeated aggregation should be possible,i.e., it should
be possible to perform aggregation on aggregates without
violating the pervious requirements.

A trivial way of aggregation is to OR the bits in the
patterns to be aggregated (as adopted in [13] and [11]). But
the information loss in this aggregation scheme is very high.
Moreover, while matching a query with an aggregate, we
cannot say that some subset of the 1-bits in the aggregate
was present in one single constituent pattern.

Considering the requirements and the problems with OR-
based aggregation, we suggest a don’t care based aggregation
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scheme; don’t cares (represented by X) are used at the posi-
tions where the constituent patterns (or aggregates) differ. We
will use⊗ to denote the aggregation operation. IfQ = A⊗B,
then theith bit of Q is obtained as,

qi =
{

ai if ai = bi

X otherwise,i.e., ai 6= bi or ai = X or bi = X.

This type of aggregates retain parts from the constituent
patterns or aggregates. A 1-bit (or 0-bit) in such an aggregate
indicate that all of the patterns contributing to this aggre-
gate had 1 (or 0) at the corresponding position. However
incorporating this extra information (i.e., X’s) incur some
space overhead, which can be minimized by compressing
the aggregates using huffman coding or run length encoding
during transmission through the network.

D. Aggregation Process

An indexing peer acts as a multiplexer in the indexing
hierarchy. It gathersin-lists (lists of patterns or aggregates
from the B child peers), aggregates them to another list
(referred to asout-list) of aggregates, and sends this list to
each of its parents.

Construction of out-list is not trivial. We want the aggregates
in the out-list to have a minimum number ofX-bits. This
ensures minimum information loss. The problem of obtaining
an out-list containing a minimum number ofX-bits is NP-
complete. Instead we use a heuristic approach to obtain
approximate solution. The formula for measuring the similarity
of two patterns/aggregates, sayQ andR, is given in (1). Table
I presents the significance of different terms in (1).

We have usedQt = {qt
i |qt

i ∈ {0, 1} ∧ t ∈ {0, 1, X} ∧ qi =
t ⇒ qt

i = 1} to define a mask onQ 2, and |Qt| to denote the
cardinality ofQt. Hence,(|Q1|+ |Q0|+ |QX |) is the length
of Q.

h(Q,R) =
E + α× F + β ×G− γ ×H

|Q1|+ |Q0|+ |QX | (1)

In this equationE andF define the number of positions in
the aggregate that will remain the same as that ofQ (or R).
While G andH give a measure of relative increase ofX-bits
in the resulting aggregate. Coefficientsα, β andγ depend on
the nature of the patterns, which may require system specific
tuning. For the simulations presented in this paper, we have
usedα = 0.33, β = 0 and γ = 0.33. The values of these
coefficients have to increased if the advertised patterns exhibit
negative correlation.

The aggregation algorithm (Algorithm. 1) takes the follow-
ing three parameters and generates the out-list.

• In-list (Pattern[]) is an array of patterns or aggregates
constructed from theB in-lists received from theB
children.

• Minimum non-X bits (O) is the minimum number of
original (i.e., non-X) bits an aggregatemust retain after
aggregation.

2For example, if Q = 0X1X 101X, then we can computeQ1 =
0010 1010 , Q0 = 1000 0100 andQX = 0101 0001

TABLE I

SIGNIFICANCE OF DIFFERENT COMPONENTS IN(1)

qi ri coeff. term computed as
0 0 1 E |Q0 ∧R0|+
1 1 |Q1 ∧R1|
X X α F |QX ∧RX |
0 X
1 X β G |QX ⊕RX |
X 0
X 1
0 1 −γ H |Q0 ∧R1|+
1 0 |Q1 ∧R0|

• Target aggregation ratio (A) is the ratio of the num-
ber of aggregates in the out-list to the number of pat-
terns/aggregates in the in-list. The aim is to achieve an
aggregation ratio ofA without violating the constraint
imposed byO.

Algorithm 1 Aggregate a list of Patterns
1: Input: inList : Pattern[ ], O : Integer, A : Float
2: Output:outList : Pattern[ ]
3: Global: h(P, Q) : see (1)
4: W : pattern width
5: outList ← inList
6: while |outList| > A× |inList| do
7: find Pr ∈ outList andQr ∈ outList such that

(Pr 6= Qr)∧
(|(Pr ⊗Qr)

X | < W −O)∧
(h(Pr, Qr) ≥ h(P, Q) ∀P, Q ∈ outList)

8: if no suchPr andQr existsthen
9: break{failed to achieve target aggregation ratio}

10: end if
11: Pn ← Pr ⊗Qr

12: outList ← {outList− {Pr, Qr}} ∪ {Pn}
13: end while
14: return outList

E. Index Distribution

Indexing peers at levell arrange intoRl groups, numbered
from 0 to (Rl − 1) (see Fig. 4). In the ideal case, all the
indexing peers in a single group (at any level) collectively
cover all the leaf peers in the system.

A peer at levell and groupg (0 ≤ g < Rl) is responsible for
transmitting its aggregated information toR parents at level
(l + 1). Each parent belongs to a different group in range
[g ×R, (g + 1)×R), respectively.

Peers at levell and group g organize into subgroups
(referred to as siblings) of sizeB to forward their aggregated
information to the same set of parents. Thus each group in
range [g × R, (g + 1) × R) at level (l + 1) will contain a
peer replicating the same index information. This provides
redundant paths for query routing and increases tolerance to
peer failure.

F. Query Routing

A query can be initiated by any peer in the system. The
query life-cycle can be divided into three phases: ascending
phase, blind search phase and descending phase.
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Fig. 4. Index distribution architecture. All the peers interacting with peerE
are labelled. Group number is printed at the bottom right corner of each box.

During theascending phase, an initiating (or intermediate)
peer checks its local information for the existence of a match.
If a match is found then the query is forwarded to the matching
child, otherwise it is forwarded to any of its parents. This
precess recurs until the query hits a peer with a match, or
reaches a highest level peer.

The Blind search phaseis executed by a highest level peer,
say Z, upon receiving a query (from a child) that does not
match any aggregate in its aggregate-lists.Z floods the query
to all other peers in its group. If no peer in a group at the
highest level contains a match then the query was for a non-
existent pattern, and so the search fails.

A query enters into thedescending phasewhen it hits a peer
containing a matching aggregate. The query is then forwarded
to the child peer advertising the matching aggregate. This
process recurs until the query reaches a leaf peer. Two types of
exceptions may occur. Firstly, a false match may occur and the
search branch terminates. Secondly, a peer may have multiple
children matching the query and multiple search branches can
be initiated. Priority and the order in which search branches
are initiated is guided by predefined policy and application-
specific requirements. A possible scale for measuring the
quality of a match is|P

1∧Q1|+|P 0∧Q0|
|P 0|+|P 1|+|P X | , i.e., the proportion

of exact-match of a queryQ with an aggregateP .
We prefer iterative version of query forwarding over recur-

sive version for two reasons. Firstly, the number of simultane-
ous search branches can easily be controlled. Secondly, search
termination criteria (e.g., maximum probes, results per query
etc. ) can be handled more flexibly.

A useful feature of DPMS is context-sensitive routing,
which stems from the existence of the ascending phase.
Peers in similar context (e.g., network proximity, common
interestetc. ) can advertise their aggregates along the same
aggregation tree. This will automatically influence the query
routing mechanism to select the nearest leaf peer containing
a matching pattern.

G. Topology Maintenance

In the DPMS index distribution hierarchy, peers interact
with each other in different roles,e.g., parent, child, neighbor

etc. An indexing peer, sayE, at levell and groupg, maintains
four separate lists for this purpose (see Fig. 4).

1) Replica-list contains the list of peers in the adjacent
groups that have common children as that ofE. This list
contains(R − 1) peers, one from each group in range
[bg/Rc ×R, (bg/Rc+ 1)×R), excludingg.

2) Parent-list This is the replica list obtained from one of
E’s parents.E uses this list to forward its aggregate
information (out-list) to all of its parents along a repli-
cation tree.

3) Child-list contains the list of all children and the replica-
list for each of them. A peer normally communicates
with the child peers only. But in case of a failure of
a child it can communicate with a replica of the failed
child. This list containsB entries corresponding to the
B children ofE at level (l − 1) and groupg/R.

4) Neighbor-list contains a fixed number of non-sibling
peers that are in the same group (g) as peerE. This list is
used for maintaining connectivity in a group, during join
operation, and for flooding queries horizontally within a
group (usually at the topmost level).

Out of these four lists a peer needs to keep track of three:
child-list, parent-list and neighbor-list. The replica-list of a
peer is the parent-list of any of its children. Peers use the
Newscast protocol [22] for maintaining and updating these
lists, i.e., to detect peer failures and arrival of new peers. Flow
of news packets is restricted to2× R groups of peers. More
specifically, the news-list of a peer at levell and groupg will
contain information about some peers from groups[bg/Rc ×
R, (bg/Rc+1)×R) at levell and groups[g×R, (g+1)×R)
at level (l + 1). That is, each peer sends news packets to
its parents, neighbors and replicas, and receives news packets
from its children, neighbors and replicas.

Unlike indexing peers, a leaf peer maintains only the
neighbor-list and forwards this list to its parents. A leaf peer
obtains its parent-list from one of its parents. It should be
noted that leaf peers do not have any replica-list or child-list.

H. Arrival of Peers

To join as a leaf a peer, sayC, has to find a level 1 indexing
peer, sayP , with an empty slot in its child-list.C joins the
indexing hierarchy as a child ofP . C constructs its parent-list
using the replica-list ofP , and starts advertising its patterns
to all of its parents. IfC fails to find a level 1 peer with an
empty slot then it can either join in both level 1 and level 0,
or select a level 1 peer with smaller number of children.

To join as an indexing peer, a peer, sayE, has to go through
the following steps:
• Choose level and group: E has to choose a level, sayl,

in the hierarchy. Selection of level can be based on the
nodes capacity, uptime distributionetc. Peers with higher
capacity (storage and bandwidth) and longer life-time are
expected to join higher levels in the indexing hierarchy.
Then peerE can choose a groupg in random such that
g is in [0, Rl).

• Construct child-list: E has to contact a seed peer to get
information about other peers in the system.E can crawl
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the indexing hierarchy to reach a peer, sayA, such that
A is at level(l− 1) and in groupbg/Rc, and the parent-
list of peerA contains less thanR entries.E can join as
a parent ofA. E has to join the group in whichA has
no parents.E has to obtain and update the replica-list of
other parents ofA. E then obtains the child-list from a
parent ofA. A can have an empty parent-list during the
initialization phase of the system, or after a failure of all
of its parents. IfA returns an empty parent-list, thenE
should look for other (up toB) peers, in the same group
as that ofA, with empty parent-list. If such peers exist
thenE should make them its children.

• Construct parent-list: To construct parent-list,E has to
find a peer, sayT , such thatT is in level (l + 1) and in
group (g ×R), andT has an empty slot in its child-list.
If such a peer (T ) exists thenE constructs its parent list
usingT and all the replicas ofT . Otherwise,E will start
with an empty parent-list, and will wait for more peers
to join at level(l + 1).

I. Departure/Failure of Peers

In DPMS, peer departure and failure are handled in the same
manner. The absence of an indexing peer, sayE, will affect
the peers in its parent-list, child-list and replica-list. Parents
and children ofE can still communicate through any of the
replicas ofE. So query routing is not hampered until all of
the replicas of a peer fail.

Failure or departure of a leaf peer has greater impact on the
system. All the index information along the replication tree,
rooted at the failed leaf peer, has to be updated. During this
period (from the point of failure to the update of all indexing
peers in the replication tree) queries directed towards the failed
leaf peer will be evaluated as false matches. This will decrease
search performance to some extent.

To efficiently deal with frequent join and leave of a leaf
peer, indexing peers should advertise their index information at
constant intervals. Any advertisement from a child peer should
be delayed until the end of the interval. The interval length can
be used to tradeoff index update delay with network overhead
due to frequent advertisements.

IV. A NALYSIS

A. Query Routing Efficiency

In this section we will provide an analytical bound on the
levels of indexing hierarchy that will allow query routing in
O(log N) hops, whereN is the total number of peers in the
system. For this analysis we will useB to denote branching
factor,R for replication factor, andnl as the number of peers
at level l. Leaf peers reside at level 0 and the height (or
maximum level) of the indexing hierarchy ish. Assuming
these definitions we can calculate the total number of peers at
level l as:

nl = n0

(
R

B

)l

= n0α
l (2)

and the total number of peers in the system as:

N =
h∑

l=0

nl = n0
αh+1 − 1

α− 1
(3)

Hence the total number of leaf peers in the system,

n0 = N
α− 1

αh+1 − 1
(4)

Now, the number of groups at levell is Rl. So, the average
number of peers in a group at levell, sayml, is:

ml =
nl

Rl
(5)

Combining (2), (3) and (5), and usingα = R
B we obtain:

ml =
N(α− 1)

Bl(αh+1 − 1)
(6)

For efficient query routing we expect the number of peers
in a group at levelh to be f × log N , where0.5 ≤ f ≤ 2.
Replacingmh = f × log N in (6) we obtain:

Bh(αh+1 − 1) =
N(α− 1)
f log N

(7)

For practical values ofα andh we can approximate(αh+1−
1) with (θ×αh) for some constantθ. Replacing this value in
(7) we can approximateh (for R 6= B andR > 1) as:

h ≈ 1
log R

× log
N × (α− 1)

θf log N
= O

(
log

N

log N

)
(8)

Thus we claim that if we can build and maintain an indexing
hierarchy of heightO

(
log N

log N

)
then we will be able to solve

the DPM problem inO
(
log N + ξκ log N

log N

)
time. Here,

O(log N) is the cost of flooding one of theRh groups at level
h, andO(ξκ log N

log N ) is the cost of reaching theκ matching
leaf peers along the indexing hierarchy of heightO(log N

log N ).
ξ accounts for the lossy aggregation scheme. For a system
without any aggregation (i.e., information loss) the value ofξ
should equal one. Section IV-C presents an estimate ofξ.

B. False Match Probability

In this section we establish the effectiveness of don’t care
based aggregation scheme over OR based aggregation3 as
adopted in [11] and [13]. In don’t care based aggregation
scheme, we consider an aggregate D to be a match for a
query Q if the set of 1-bits in Q is a subset of the 1-bits
in D, assuming the don’t care positions in D to be 1s. This
assumption leads to the possibility offalse match, where an
aggregate can match a query, although none of the constituent
patterns is a match for the query. For measuring the false match
probability we will assume that the pattern’s (advertised by
the leaf peers) are Bloom-filters, with parametersm, n, andk
(see section III-B). Assuming the hash functions are perfectly
random4, the probability that a specific bit is 1, after all of the
n elements have been inserted into the filter is

p = 1−
(

1− 1
m

)kn

. (9)

3To form an aggregate, patterns are bit-wise ORed instead of introducing
don’t cares in bit-positions where they disagree.

4A hash function is perfectly random if the hashed value is uniformly
distributed over the range, in this case{0, m− 1}
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The probability of false match depends on the amount of
aggregation, which in turn increases as we move up along the
indexing hierarchy. We can estimate the probability (φl) that
an aggregate D (at levell) is a false match for a query Q as:

φl = (1− pτl)yl (10)

Here,yl is the average number of patterns contained in D,
and τl = |Q1 ∧ DX |. Hence,pτl is the probability that all
of the τl 1-bits of Q are present in a pattern contained in D,
andφl stands for the probability that none of the constituent
patterns in D, has all of theτl 1-bits of Q.

We can estimateyl asyl = 1
Al andτl asτl = τ

(
m−O

m

) (
l
h

)
.

Here A and O are as defined in section III-D.τ = χpm is
the expected number of ones in Q, andχ is the percentage of
elements (i.e., n) from a pattern hashed into Q.

(
m−O

m

) (
l
h

)
is the proportion of don’t care bits in an aggregate at level
l, considering that the number of don’t care bits increases
linearly as we move up along the indexing hierarchy.

For bitwise-OR based aggregation scheme, we can estimate
false match probability as,

ψl = (1− pτ )yl (11)

Comparing (10) and (11), we can infer thatφl < ψl as
τl < τ .

C. An Estimate ofξ

Let ν be the probability that a query will fail to match any
aggregate at levell, though it matched an aggregate at level
(l + 1). Then a query will fail to match an aggregate at level
l with probability (1 − ν)h−lν and in that case(h − l) hops
will be wasted. Hence the expected number of probes in a
complete descending phase (i.e., from level h to level 0) is:

ξh = h +
h−1∑

l=0

(h− l)(1− ν)h−lν

Applying equality
∑n

t=0 txt = x−(n+1)xn+1+nxn+2

(1−x)2 yields:

ξ = 1 +
1
νh

[
1− ν − (h + 1)(1− ν)h+1 + h(1− ν)h+2

]

(12)
An estimate ofν is, ν =

(
1− p∆τ

)y
. Here,∆τ = τl+1 −

τl = pχ(m−O)
h and y = 1

A . y is the average number of
aggregates from levell that are fused to form an aggregated
at level (l + 1).

D. Advertisement Overhead

In this section we compare the advertisement overhead
in DPMS against that in DHT-based systems. For DPMS,
number of advertisement messages in one refresh interval is
CDPMS =

∑h−1
l=0 Rni = RN αh−1

αh+1−1
Let < be the total number of advertised patterns in the

system. In DPMS< can be computed as< = Pn0 =
PN α−1

αh+1−1
. Here,P is the average number of patterns ad-

vertised by a leaf peer.5 Now if this same number of patterns

5Unlike DHT techniques, in DPMS a peer can transmit all of its indices in
a single message to a parent. Hence, the number of advertisement messages
generated in DPMS does not depend on the number of pattern being
advertised.

(i.e., <) are advertised in a DHT-based system, then we can
estimate the number of advertisement messages asCDHT =
< lg N = PN α−1

αh+1−1
lg N . Hence, the ratio of message count

in these two systems is:

MC =
CDPMS

CDHT
=

R(αh − 1)
P (α− 1) lg N

(13)

AssumingW to be the width of a pattern, we can esti-
mate total advertisement volume for DHT-based systems as,
VDHT = <W lg N . On the other hand, total advertisement
volume in DPMS is,VDPMS =

∑h−1
l=0 PW (BA)lnlR =

<WR (RA)h−1
RA−1 . Hence, the ratio of message volume in these

two systems is:

MV =
VDPMS

VDHT
=

R
(
(RA)h − 1

)

(RA− 1) lg N
(14)

In Fig. 5(a) and Fig. 5(b) we produced plots ofMC and
MV , respectively. For these plots we have usedA = 0.6,
h = 5, P = 10 andR = 2, 3. These are the parameter settings
used in the experiments in section V as well. To count for
the varying number of peers in the system we have variedB
from 4 to 9, which corresponds to a population of24 to 910
thousand peers forR = 2 case and40 to 1, 061 thousand peers
for R = 3 case. From Fig. 5 we can infer that advertisement
message count in DPMS is much lower than that in DHT-
based systems. Advertisement message volume, on the other
hand, in DMPS is comparable to that of DHT-based systems
for R = 2 case, though it is about 4 times higher forR = 3
case.

V. EXPERIMENTAL EVALUATION

We have conducted experiments for two cases: a)random
case: patterns are randomly generated bit strings, and b)
biased case: patterns are Bloom-filters generated using 3-
grams from<song title, artist> tuples. These tuples are chosen
randomly from a database of 46,500 real-world song infor-
mation extracted fromhttp://www.leoslyrics.com/. A query in
random case is created by randomly taking1

3 of the 1-bits from
a randomly chosen advertised pattern. While in biased case,
a query is created as a bloom-filter constructed from1

3 of the
advertised 3-grams from a randomly chosen advertisement.

We have evaluated routing performance and storage over-
head for various parameter settings (section V-A), for different
network sizes (section V-B), and for varying levels of replica-
tion (with peer failure) (section V-C). We have calculated each
data point by averaging the statistical values obtained from
independent simulation runs and 3000 queries per simulation
run. Each simulation run corresponds to a randomly generated
instance of the system.

A. Parameter Tuning

Table II summaries the system parameters and their value(s).
Experiments in this section are dedicated for analyzing the
impact of different system parameters on query routing per-
formance and storage overhead, and not on fault-tolerance
characteristics of the system. Hence, we have chosen R=1.
The performance metrics analyzed in this section are:
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Fig. 5. Advertisement overhead

TABLE II

SYSTEM PARAMETERS AND THEIR VALUES USED FOR THE PARAMETER

TUNING EXPERIMENTS

Param. Value(s) Description
B 4 Branching factor
R 1 Replication factor
H 4 Maximum level
N 4092 no. of peers in the system
P 10 number of patterns advertised by a leaf

peer.
A 0.6 target aggregation ratio
O 10, 20. . . 60 Minimum number of non-X bits in an

aggregate
W 80, 100. . . 200 Pattern or aggregate width, same asm

for Bloom-filter

• First-hit probes is the number of peers being probed
before the first match is found.

• Avg. probes/hitis the average number of probes required
for each hit. In the cases where multiple matches were
present, we traced up to 20 matches.

• Indexing overhead (IO)is an indicator for the extra
storage space requirement introduced by the indexing
hierarchy. IO is measured as:

IO =
no. of aggregates (at the indexing peers)

no. of patterns (at the leaf peers)
(15)

• Effectiveness of aggregation (EA)quantifies the amount
of reduction in (index) storage requirement achieved with
the aggregation mechanism, and is measured as:

EA = 1− no. of aggregates with aggregation
no. of aggregates without aggregation

(16)

Analyzing the curves in Fig. 6, we can infer the following:

• Query routing accuracy increases with increase inO (Fig.
6(a) and 6(b)) but at the expense of increased storage
overhead (see Fig. 6(c) and 6(d)). Information content
of the aggregates increases with increase inO, hence
better routing efficiency. On the other hand, increase in
O implies less space for aggregation, and higher number
of aggregates in the system, hence increased storage
overhead.

• For O = W and O = 60|W=80 cases no aggregation
takes place andξ = 1, which gives the upper bound
on routing performance and lower bound on storage
overhead.

• Not all bits of a pattern are required for query routing
with high accuracy. Query routing accuracy is almost the
same forO = 50 andO = W cases, whereas, indexing
overhead forO = 50 case is only65% of O = W case.

• For O = 10 andO = 20 curves query routing accuracy
increases with increase inW . This is because we are
using both positional value and content of each bit while
matching a query to an aggregate. WhenW increases,
number of possible positions of non-X bits increases,
which reduces the probability of false matches. Hence,
the decrease in the number of hops.

• For a fixed value ofO, IO decreases with increase inW .
Given two random patterns, the probability that they will
match on a given number of bits increases withW . This
results into higher probability of aggregation and lower
indexing overhead.

The observations presented for the random case (Fig. 6) are
equally applicable for the biased case (Fig. 7). In addition, we
can infer the following by comparing these graphs.
• Query routing performance is in general better for the

biased case. Specially forO = 10 andO = 20 curves it
is about 3 times better, while EA is almost identical.

• IO and EA are better for the biased case as well. For
O ≤ 40 curves,EA reaches its upper limit6 for the
biased case (Fig. 6(d) and Fig. 7(d)). Which implies,
higher level of aggregation is possible by reducingA,
without sacrificing routing performance.

B. Scaling Behavior

In this section we analyze the scaling behavior of DPMS
with growth in network size. Based on the observations in
section V-A, we have chosenW = 180 and O = 50 for the
experiments presented in this section.N has been varied from
around8, 000 to 21, 000 while keeping the number of peers
per group at the highest level of the indexing hierarchy in the
range of0.6 log N and 1.5 log N . We have usedR = 1 and
B = 4 and the value ofH was set to5 to accommodate all
the peers in the indexing hierarchy, without violating the above
mentioned constraints.

In Fig. 8, the1st hit Probes (estimated)curve is a plot of
probes = f logB N + ξest ∗ hest.

6Upper limit for EA = 1 −
∑h

l=1
PAl−1Blnl∑h

l=1
PBlnl

= 1 − A(Ah−1)
h(A−1)

(note:

leaf peer do not aggregate andR = 1)
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ξest has been derived from (12) using the parameter values
used in this experiment and puttingχ = 0.33 7. hest has been
derived from (7) forR = 1 as,hest = logB

(
1
B + N(B−1)

Bf logB N

)
.

It is evident from Fig. 8 that the routing efficiency a) does
not decrease significantly with network growth, b) is much
better for biased case than that of the random case, and c) is
close enough to the estimated curve.

For this experiment none of the parameters affecting storage
overhead where varied, henceIO andEA were constant.IO
and EA for random case were4.04 and 0.24, respectively;
and for biased case were3.07 and0.48, respectively.

C. Fault-tolerance

For the experiments in this section we have variedR from
1 to 6 while keeping all other parameters at a constant value.
We have usedH = 4, B = 4, O = 50 and W = 180. N
was varied from about4, 000 (R = 1) to 40, 500 (R = 6).
For each value ofR we have deactivated (i.e., removed) up to
50% of the peers in5% step, and have executed 3000 queries
on the rest of the peers. The impact of bias among the patterns
is orthogonal to fault-tolerance characteristics of the system,
hence we have presented only the random case in this section.

Failure of indexing peers may result into unreachable leaf
peers (from levelH). To measure the impact of this phe-
nomena we have definedhit rate (Fig. 9(a)) as the average
percentage of matches that are discovered by a query. The
impact of replication on the overall storage overhead in the
system is presented in Fig. 10.

By analyzing the curves in Fig. 9 and Fig. 10 we can infer
the following:

• Without replication (R = 1) hit-rate and routing effi-
ciency decrease drastically as more and more peers fails.
In this case failure of each indexing peer results into many
unreachable leaf peers and increases false match rate.

• The downside of replication is the exponential growth
in IO (see Fig. 10(a)). HoweverEA increases with
increases inR (see Fig. 10(b)). It can be shown that the
value of EA tends to1 − Ah−1 as R tends to infinity.
This justifies the curve in Fig 10(b).

• For resilient query routing, replication is necessary. But
a small value ofR (e.g., 2 or 3) would suffice this need
for most systems, assuming up to30% failure rate.

7 1
3

of the elements present in a randomly selected<song title,artist> tuple
was used for generating a query
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Fig. 10. Impact of replication on storage overhead

VI. CONCLUSION AND FUTURE WORKS

In this paper we have defined the Distributed Pattern
Matching (DPM) problem and have presented a scalable
solution, DPMS, to this problem. DPMS supports flexible
queries involving partial and multiple keywords. Query routing
efficiency of DPMS is comparable to that of the structured
P2P systems. For moderately stable networks, DPMS provides
guarantee on search completeness and on the discovery of rare
items. Peers in DPMS maintain constant number of links,
in contrast toO(log N) links per peer required by most
DHT-based systems. DPMS can easily be tailored to achieve
context-sensitive (e.g., network proximity, user interestetc. )
query routing. Moreover, DPMS can exploit the heterogeneity
in peer capabilities, and does not place any hard restriction on
the placement of documents or indices.

The main drawback of the proposed system is the storage
overhead introduced by hierarchical indexing and replication.
Experimental results presented in this paper demonstrate the
worst possible values for the storage overhead (i.e., for random
case). For most applications, there exists some bias among
the advertised patterns, which can enable higher levels of
aggregation and hence lower levels of storage overhead, as
demonstrated by the results for the biased case. Another prob-
lem in DPMS stems from leave/join of leaf peers. Leave/join
of indexing peers has local effect only. But, leave/join of a
leaf peer results into cascaded updates along its replication
tree. This problem can be mitigated by using periodic and
differential updates of index information between adjacent
indexing peers. This latency in update will not hamper the
normal operation of the system other than degrading query
routing performance to some extent.

Modification of data at leaf peers (e.g., change in filename,
insertion of new data/file or deletion of existing data/file)
will invalidate the associated index information. This problem
persists in any structured or semi-structured system, though
the effect is higher in a hierarchical indexing system like
DPMS. It is possible to reduce the effect of data dynamism
using periodic index updates. Another possible measure is
to allow approximate matching in query pattern and indexed
pattern/aggregate instead of strict subset matching.

We are extending this research to demonstrate the appli-
cability of DPMS in different application domains, includ-
ing service discovery and P2P databases. We also intend to
investigate the self-tuning and self-optimization aspects of
DPMS, as our future research in this direction. Other possible
extensions to this research include, a) incorporating context-
sensitive routing in DPMS and measuring its effectiveness,
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Fig. 9. Impact of replication and peer failure on routing performance and hit rate of a query

and b) enhancing DPMS by adopting Bloomier filters [8] for
supporting range queries.
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