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Abstract— Flexibility and efficiency are the prime requirements 5 L. 200 @0
for any P2P search mechanism. Existing P2P systems do not a0 T00R1 071 80107
seem to provide satisfactory solution for achieving these two
conflicting goals. Unstructured search protocols (as adopted in
Gnutella and FastTrack) provide search flexibility but exhibit Query)
poor performance characteristics. Structured search techniques
(mostly Distributed Hash Table (DHT)-based), on the other hand,
can efficiently route queries but support exact-match semantic
only.

In this paper we have defined Distributed Pattern Matching

(DPM) problem and have presented a novel P2P architecture,
named Distributed Pattern Matching System (DPMS), as a solu-
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tion. Possible application areas of DPM include P2P search, ser- S i P2P network} §

vice discovery and P2P databases. In DPMS, advertised patterns \'-—“\ .

are replicated and aggregated by the peers, organized in a lattice- % TG OIM 268 C 1011 0010 1010
like hierarchy. Replication improves availability and resilience & 1000 1000 e D: 0101 0100 0101
to peer failure, and aggregation reduces storage overhead. An

advertised pattern can be discovered using any subset of its 1-bits. T Link e > content T message

Search complexity in DPMS islogarithmic to the total number of

peers in the system. Advertisement overhead and guarantee onFig: 1. The Distributed Pattern Matching (DPM) problem

search completeness is comparable to that of DHT-based SyStems_have provided mathematical analysis and simulation results for

We have presented mathematical analysis and simulation results €stablishing the effectiveness of the proposed architecture.
to demonstrate the effectiveness of DPMS. DPMS achieves many desirable properties of both the

unstructured and structured P2P systems. Like unstructured
systems DPMS supports partial keyword matching, utilizes

I. INTRODUCTION . -
) _ ) _the heterogeneity in peer capabilities, and does not place any
The generic problem of pattern matching and its variangs, g restriction on index/document placement. Like structured

have. extensively been stud_ied in (_Zomputer Science Iiteratpg;,stems' on the other hand, DPMS attains logarithmic bound
In this paper we have defined Dlstrlbuted Pattern Matching, search complexity and offers guarantee on search com-
(DPM) as a variant of the generic pattern matching problefjeteness and discovery of rare items. Advertisement traffic

with two additional constraints. First, we are interested ip DPMS is comparable to that of DHT-based structured P2P
Bloom-filter [5] based pattern matchingg, subset matching), systems.

and second, we assume that the patterns are scattered amoRg ¢ knowledge Distributed Pattern Matching (DPM)

the peers of a PZP overlay network (see Fig. 1). Given a seafifiplem has never been addressed by any research activity
pattern@, the goal is to find the peer(s) containing a patterp p2p context!The index distribution architecture of DPMS
(say P) matchingQ. P matchesy if PAQ = Q;i.e, the 1-bits js ynique and has been designed specifically to solve the
of @ is a subset of the 1-bits df. We assume a pattern to beéypp problem. The novel aggregation scheme, proposed in this
a bloom filter (a couple of hundred bits in length) constructeh ey, can effectively reduce storage overhead at the indexing
by hashing the properties of a shared object (such as a filegers without incurring a significant decrease in query routing
a service). _ _performance. However, the use of bloom filter for representing
Problems that can be mapped to DPM include &) partighgices is not new. Many network applications use bloom

and multi-keyword search for content sharing P2P systems,fbrs A comprehensive list of such applications can be found
partial service description matching for service discovery syg; g

tems, c) data record pre-scanning for distributed P2P databasepe rest of this paper is organized as follows. Section I

systems, d) mqlecular fingerprint matching in some e”ViSiO”ﬁibhlights and compares the approaches related to DPMS.

distributed environmengtc The architecture and operation of DPMS are presented in
In this paper we have presented a novel P2P system, DPMgion 1)1, Mathematical analysis of search complexity in

(Distributed Pattern Matching System), for efficiently solvingyppis is provided in section IV. Experimental results and
the DPM problem. We have also demonstrated the application

of DPMS in solving partial keyword matching problem. We 1This work is an extension of our previous publication [3].
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concluding remarks are presented in section V and sectiist of Bloom filters per neighbor. Th&" Bloom filter in the
VI, respectively. list for neighbor, sayM, summarizes the documents that are
1—1 hops away vial/. A query is forwarded to the neighbor
with a matching Bloom filter at the smallest hop-distance. This
approach aims to find the closest replica of a document with
Existing solutions for pattern matching [4], [10] in centrala high probability.
ized environment, hold linear relationship with the number of Schmidt et. al. [19] have presented an approach, named
advertised patterns (dext according to pattern-matching lit- Squid, for supporting partial keyword matching in DHT-
erature) to be matched. This implies flooding for an equivalephsed structured P2P networks. They have adopted space-
solution to the DPM problem. filling-curves to map similar keywords to numerically close
From architectural point of view, Secure Service Discovemyeys. Squid supports partial prefix matching.g, queries
Service (SSDS) [11] is the closest match to DPMS. Likgke compu* or net*) and multi keyword queries. Squid does
DPMS SSDS uses Bloom filter and aggregation. Howeverfpt support true wildcard matching for queries likaet*.
index distribution in SSDS is through a tree-like hierarchygnother extension to the DHT-technique for solving partial-
of indexing nodes, in contrast to the lattice-like hierarchiyeyword matching has been proposed in [12]. A keyword
used by DPMS. SSDS does not use any replication in teen be fragmented intg-grams, and each-gram can be
indexing hierarchy. Higher level nodes in SSDS index tragashed and stored at the responsible peer. This approach can
handle higher volume of query/advertisment traffic and thslve partial keyword matching problem. However, solving the
system is more sensitive to the failure of these nodes. Anothgineric DPM problem with this approach is not feasible.
major drawback of SSDS, compared to DPMS, lies in its In general DHT-techniques ([20], [17], [16], [24}c ) are
aggregation mechanism. SSDS uses bitwise logical-OR @t suitable for solving partial keyword matching problem
index aggregation. The aggregation scheme adopted in DP¥Sd DPM problem) for two reasons. Firstly, DHT-techniques
(explained in section 11I-C) retains unchanged bits from comequire to partition the key-space into non-overlapping re-
stituent patterns and provides more useful information durirgons and to assign each region to a peer bearing an ID
guery routing. from that region. But from pattern matching perspective it
Unstructured systems ([2],[1]) identify objects by keywordsgs quite difficult to partition even one dimensional pattern
Advertisements and queries are in terms of the keywor@lsr key) space into non-overlapping clusters, while preserving
associated with the shared objects. Structured systems, ondlageness of patters in hamming distance. Secondly, DHT-
other hand, identify objects by keys generated by applyingchniques cannot handleommon keywords problerfi4]
one-way hash function on keywords associated with an objegkll. Popularn-grams like "tion” or "ing” can incur heavy
Key-based query routing is much efficient than keyword-baséshd on the peers responsible for thesgrams, resulting into
unstructured query routing. The downside of key-based queryequal distribution of load among the participating peers.
routing is the lack of support for partial-matching semantics.

Unstructured systems, UtlllZlng blind search methods (llkﬁ| DISTRIBUTED PATTERN MATCHING SYSTEM (DPMS)

ﬂoq(_jmg[Z] aqd random—walks [151)’ can easﬂy be modified to This section presents details on DPMS architecture. In this
facilitate partial-matching of queries, and in general to solve

DPM problem. Due to the lack of proper routing informa_secnon we will use the terrrpgtte_rn andlndexmterch_ange-
tion, the generated query routing traffic would be very higﬁl.bly’ as pattems are used as indices for query routing.
Besides, there would be no guarantee on search completeness. _

Many research activities are aimed at improving the routirffy Overview
performance of unstructured P2P systems. Different routingln DPMS a peer can act asleaf peeror indexing peerA
hints are used in different approaches. In [7] routing is biaséshf peer resides at the bottom level of the indexing hierarchy
by peer capacity; queries are routed to peers of higher capacityd advertises its indices (created from the objects it is willing
with higher probability. In [23] and [21] peers learn from theo share) to other peers in the system. An indexing peer, on
results of previous routing decisions and bias future quetlye other hand, stores indices from other peers (leaf peers
routing based on this knowledge. In [9] peers are organized indexing peers). A peer can join different levels of the
based on common interest. Restricted flooding is performediiexing hierarchy and can simultaneously act in both the
different interest groups. Many research papers ([7], [23], [13bles. Indexing peers get arranged into a lattice-like hierarchy
etc ) propose storing index information from peers within &see Fig. 2) and disseminate index information using repeated
radius of 2 or 3 hops on the overlay network. All of thesaggregation and replication.
techniques reduce volume of query traffic to some extent, butDPMS uses replication trees (see Fig. 2a) for disseminating
do not provide guarantee on search completeness. patterns from leaf peers to a large number of indexing peers.

Bloom filter is used by many unstructured P2P systems fbiowever, such a replication strategy would generate a large
improving query routing performance. In [13] each peer storgslume of advertisement traffic. To overcome this shortcom-
Bloom filters from peers one or two hops away. Experimentalg, DPMS combines replication with lossy-aggregation. As
results presented in [13] show that logical OR-based aggreghown in Fig. 2b, advertisements from different peers are
tion of Bloom filters is not suitable for aggregating informatiomggregated and propagated to peers in the next level along
from peers more than one hop away. In [18] each peer stor¢ha aggregation tree.

Il. RELATED WORKS
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The structure of the indexing hierarchy and the amousociated with a document are encoded in a single bloom-
of replication are controlled by two system-wide parametefiter. To facilitate wildcard matching, each keyword is first
namely replication factoR and branching factoB. Patterns fragmented inta)-grams (usually trigrams). Thegsegrams are
advertised by a leaf peer are propagateditdndexing peers then inserted into the Bloom filter representing the document.
at level [. On the other hand, an indexing peer at leVelQuery keywords are also fragmented imtgrams (see Fig. 3)
contains patterns fron’ leaf peers. Due to repeated (lossydnd encoded into a Bloom filter. The 1-bits on a query should
aggregation, information content of the aggregates reduced@s subset of the set of 1-bits of any pattern that it should
we go up along the indexing hierarchy. match against.

Branching factor = 3 i
A Subtree @ Advertising peer @ Indexing peer 9 Advertisement-1

Replication factor = 2 —
Keywords: invisible man
Level 3 Trigrams: inv, nvi, vis, isi, sib, ibl, ble, man

‘ & /8 ‘? # ‘?\ 79 %\ Bloom filter: 00100110100011101001001001100111
ﬂ X’\ A/'.‘ A“\M/‘A /‘\ ?\ /\ Level 2 W‘

A AN G AT S
| A 't [\ éee é00 00

Trigrams: vis, isi, sib, ibl, ble, wom, oma, man
Level 1 Bloom filter: 10100010001011101011000001100101

Query

Query: visi man

Leafs

a) Replication Tree: Propagation of b) Aggregation Tree: Hierarchical Trigrams:  vis, isi, man
patterns generated from a peer aggregation of patterns and/or Bloom filter: 00000010000010000001000001000100
aggregates
Fig. 2. DPMS overview Fig. 3. Index construction example; quéryvisixman<” matches advertised

] ) ] ] names'‘invisible man” and“visible woman”
The indexing hierarchy has three-fold impact on system

performance. Firstly, the indexing hierarchy evenly distributes For a P2P service discovery system indices can be obtained
index information (and queries) in the highest level indexing a similar fashion, using attribute-value pairs instead of
peers. This helps in load balancing the system and improves,words. Molecular fingerprint can be used as index for

fault tolerance. Secondly, peers can route queries towakdme envisioned distributed system storing molecular structure
a target leaf peer without having any global knowledge Gfformation.

the overlay topology. Finally, the indexing hierarchy helps in
minimizing query forwarding traffic. While forwarding a query
from a root peer to multiple leaf peers in the same aggregation Aggregates

tree, shared path from the root peer to the common ancestopn aggregate is obtained by combining two (or more)

of the target leaf peers is utilized. different patterns (or aggregates). DPMS index distribution
and query routing architecture is independent of the under-
B. Index/pattern Construction lying aggregation scheme. It is possible to plug-in different

DPMS uses Bloom filters [5] as indices. Bloom filter is29gregation schemes with DPMS. However, all of the peers
a space-efficient data structure used for set membership teift2 System must use the same aggregation mechanism. An
However, this space-efficiency comes at the expense of a snglpregation mechanism should have the following properties
possibility of false positive in the membership check operatiof? be compatible with the DPMS indexing hierarchy:

The algorithm for Bloom filter construction is simple. A « The aggregation scheme should compress index infor-
Bloom filter is represented as an m-bit array. k different hash mation obtained from child peers. Lossy compression is
functions are also required to be defined. Each of these hash allowed. Parameter control over the level of aggregation
functions should return values within the range{0f. .., m— if preffered.

1}. In an empty Bloom filter all of the m-bits are set to 0. To « The aggregated form should retain original pattern infor-
insert an element (a string or keyword), it is hashed with the k mation (to some extent), making it possible to perform
hash functions and corresponding k array positions are set to pattern matching on the aggregates.

1. To test set membership for an element, it is hashed with thee Repeated aggregation should be possibée, it should
same k hash functions to get k array positions. If all of these be possible to perform aggregation on aggregates without
k-bits are seti(e., 1) then with high probability the element is violating the pervious requirements.

a member of the set represented by the Bloom filter, otherwisea trivial way of aggregation is to OR the bits in the

it is not. False positive probabilitZ for a membership test iﬁattems to be aggregated (as adopted in [13] and [11]). But
calculated ag = (1 — (1 — %)”’“ , where n is the number the information loss in this aggregation scheme is very high.
of elements inserted in the Bloom filteris minimized when Moreover, while matching a query with an aggregate, we
k = In2- (m/n). For example withm/n = 8 andk = 5, cannot say that some subset of the 1-bits in the aggregate
e~ 0.02. was present in one single constituent pattern.

A document in a traditional file-sharing P2P system is Considering the requirements and the problems with OR-
associated with a set of keywords. In DPMS all the keywordised aggregation, we suggest a don’t care based aggregation
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scheme; don't cares (represented by X) are used at the posi-

tions where the constituent patterns (or aggregates) differ. We
will use ® to denote the aggregation operationQlii= A® B,
then thei'” bit of () is obtained as,

o a; if a; = bz
4= { X otherwise,i.e, a; #b; ora; = X orb; = X.

This type of aggregates retain parts from the constituent
patterns or aggregates. A 1-bit (or 0-bit) in such an aggregate
indicate that all of the patterns contributing to this aggre-
gate had 1 (or 0) at the corresponding position. However
incorporating this extra informationi.¢., X’s) incur some
space overhead, which can be minimized by compressing,

the aggregates using huffman coding or run length encoding
during transmission through the network.

D. Aggregation Process
An indexing peer acts as a multiplexer in the indexing

TABLE |
SIGNIFICANCE OF DIFFERENT COMPONENTS IN1)

q; r; coeff. term computed as
0 0 1 E QAR+

1 1 Q' A RY|

X X a F QX A RX]

0 X

1 X B G Q¥ & RX|
X 0

X 1

0 1 — H QAR+

1 0 |Q' A RO|

Target aggregation ratio 4) is the ratio of the num-
ber of aggregates in the out-list to the number of pat-
terns/aggregates in the in-list. The aim is to achieve an
aggregation ratio ofdA without violating the constraint
imposed byO.

hierarchy. It gathersn-lists (lists of patterns or aggregatesﬁ"gorithm 1 Aggregate a list of Patterns

from the B child peers), aggregates them to another listl:
(referred to asout-list) of aggregates, and sends this list to g:
each of its parents. 4
Construction of out-list is not trivial. We want the aggregatess:
in the out-list to have a minimum number oJf-bits. This  6:
ensures minimum information loss. The problem of obtaining’:
an out-list containing a minimum number &f-bits is NP-
complete. Instead we use a heuristic approach to obtain
approximate solution. The formula for measuring the similarityg:
of two patterns/aggregates, s@yand R, is given in (1). Table o
| presents the significance of different terms in (1). 10:
We have used)’ = {q!|¢! € {0,1} At € {0,1,X} A g; g
t = ¢! =1} to define a mask o ?, and|Q’| to denote the 3.
cardinality of Q. Hence,(|Q'| + |Q°| + |Q*|) is the length

Input: inList : Pattern[], O : Integer, A : Float
Output: outList : Pattern|]

: Global: h(P, Q) : see (1)

W : pattern width
outList «— inList
while |outList| > A x |inList| do
find P, € outList and Q. € outList such that
(Pr # Qr)A
(|(Pr® Q)X < W — O)A
(h(Pr,Qr) > h(P,Q) YP,Q € outList)
if no suchP,. and (), existsthen
break{failed to achieve target aggregation ratio
end if
Pn — Pr ® Q'r
outList — {outList — {P.,Qr}} U{P,}
end while
return outList

14:
of Q.

E+axF+8xG—-—vxH
Q'+ Q0 + 1Q¥|

h(Q, R) 1)

E. Index Distribution
Indexing peers at level arrange intoR! groups, numbered

In this equationE’ and F' define the number of positions infrom 0 to (R — 1) (see Fig. 4). In the ideal case, all the

the aggregate that will remain the same as thaf)dfor R).

indexing peers in a single group (at any level) collectively

While G and H give a measure of relative increaseXfbits cover all the leaf peers in the system.

in the resulting aggregate. Coefficients 5 and~ depend on

A peer at level and groupy (0 < g < R') is responsible for

the nature of the patterns, which may require system speciignsmitting its aggregated information # parents at level
tuning. For the simulations presented in this paper, we haye+ 1). Each parent belongs to a different group in range
useda = 0.33, 6 = 0 and~y = 0.33. The values of these [g x R,(g+1) x R), respectively.

coefficients have to increased if the advertised patterns exhibieers at levell and group g organize into subgroups

negative correlation.

(referred to as siblings) of sizB to forward their aggregated

The aggregation algorithm (Algorithm. 1) takes the followinformation to the same set of parents. Thus each group in

ing three parameters and generates the out-list.

rangefg X R,(g + 1) x R) at level (I + 1) will contain a

« In-list (Pattern]]) is an array of patterns or aggregatepeer replicating the same index information. This provides

constructed from theB in-lists received from theB
children.
e Minimum non-X bits @) is the minimum number of

redundant paths for query routing and increases tolerance to
peer failure.

original (.e., non-X) bits an aggregateustretain after £ Query Routing

aggregation.

A query can be initiated by any peer in the system. The
guery life-cycle can be divided into three phases: ascending

2For example, ifQ = 0X1X 101X, then we can comput&)! = i !
phase, blind search phase and descending phase.

0010 1010, QY = 1000 0100 and@¥ = 0101 0001
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ancm.g foctor.B=3 . Rephcam"fafw"}: 2 etc An indexing peer, say, at levell and groupg, maintains
! ! Level 2 - Index four separate lists for this purpose (see Fig. 4).

-0 /}@O -0 }O 1) Replica-list contains the list _of peers in the r_:ldjgcent
N 1 2 3 groups that have common children as thatofThis list
N/ o AN ottt contains(® - 1) poers, e from cach group in range

E %’5}5 OO g\é O - Ol 2) Parent-list This is the replica list obtained from one of

. E’s parents.E uses this list to forward its aggregate

l / Level O - leafs information (out-list) to all of its parents along a repli-

K % ______ o cation tree.
0 3) Child-list contains the list of all children and the replica-
For peer E list for each of them. A peer normally communicates
Child-list {ABC) Parent-list  :{S,T) with the child peers only. But in case of a failure of
Replicalist < (L) Neighbor-list : {H.7} a child it can communicate with a replica of the failed
Fig. 4. Index distribution architecture. All the peers interacting with ieer child. This list containsB entries corresponding to the

are labelled. Group number is printed at the bottom right corner of each box. B children of E at level (l _ 1) and groupg/R.
4) Neighbor-list contains a fixed number of non-sibling
peers that are in the same groyp ds peetr. This listis

During theascending phasen initiating (or intermediate) used for maintaining connectivity in a group, during join

peer checks its local information for the existence of a match. X . ) . 2
If a match is found then the query is forwarded to the matching operation, and for flooding queries horizontally within a
child, otherwise it is forwarded to any of its parents. This group (usually "f‘t the topmost level).
precess recurs until the query hits a peer with a match, orOut of these four lists a peer needs to keep track of three:
reaches a highest level peer. ch|Id-I_|st, parent-llst.and nelghbor-llst. The replica-list of a

The Blind search phasés executed by a highest level peerP€€r iS the parent-list of any qf its _chlldren. Peers use the
say Z, upon receiving a query (from a child) that does nd}lew;cast protocol [22] fpr mamtammg and updating these
match any aggregate in its aggregate-ligtsloods the query lists,i.e., to detect. peer fa_;ulures and arrival of new peers. Flow
to all other peers in its group. If no peer in a group at th@f News packets is restricted fox 1 groups of peers. More
highest level contains a match then the query was for a nciRecifically, the news-list of a peer at leveind groupg will
existent pattern, and so the search fails. contain information about some peers from gro{ips’ R| x

A query enters into thdescending phasehen it hits a peer & (L9/R]+1) x R) at levell and groupsgg x R, (g+1) x R)
containing a matching aggregate. The query is then forward®dlevel (I + 1). That is, each peer sends news packets to
to the child peer advertising the matching aggregate. THig Parents, neighbors and replicas, and receives news packets
process recurs until the query reaches a leaf peer. Two typed'8f its children, neighbors and replicas.
exceptions may occur. Firstly, a false match may occur and théJnlike indexing peers, a leaf peer maintains only the
search branch terminates. Secondly, a peer may have multfyfighbor-list and forwards this list to its parents. A leaf peer
children matching the query and multiple search branches ¢fains its parent-list from one of its parents. It should be
be initiated. Priority and the order in which search branch8§ted that leaf peers do not have any replica-list or child-list.
are initiated is guided by predefined policy and application-
specific requirements. ,1A ppssi(tgle Oscale for measuring the Arrival of Peers
quality of a match isFe2 AL e, the proportion  To join as a leaf a peer, say, has to find a level 1 indexing
of exact-match of a quer§) with an aggregate”. peer, sayP, with an empty slot in its child-listC' joins the

We prefer iterative version of query forwarding over reculindexing hierarchy as a child @?. C' constructs its parent-list
sive version for two reasons. Firstly, the number of simultang@sing the replica-list of?, and starts advertising its patterns
ous search branches can easily be controlled. Secondly, se@chll of its parents. IfC fails to find a level 1 peer with an
termination criteria €.g, maximum probes, results per querempty slot then it can either join in both level 1 and level 0,
etc ) can be handled more flexibly. or select a level 1 peer with smaller number of children.

A useful feature of DPMS is context-sensitive routing, To join as an indexing peer, a peer, dayhas to go through
which stems from the existence of the ascending phasge following steps:
Peers in similar contexte(g, network proximity, common | choose level and grougE has to choose a level, say
interestetc. ) can advertise their aggregates along the same i the hierarchy. Selection of level can be based on the
aggregation tree. This will automatically influence the query  ,4es capacity, uptime distributi@tc Peers with higher
routing mechanism to select the nearest leaf peer containing capacity (storage and bandwidth) and longer life-time are

a matching pattern. expected to join higher levels in the indexing hierarchy.
) Then peerE can choose a groug in random such that
G. Topology Maintenance g isin [0, RY).

In the DPMS index distribution hierarchy, peers interact « Construct child-list £ has to contact a seed peer to get
with each other in different roleg.g, parent, child, neighbor information about other peers in the systdihcan crawl
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the indexing hierarchy to reach a peer, sdysuch that  Hence the total number of leaf peers in the system,
Ais at level(l — 1) and in group|g/R], and the parent- o—1

list of peer A contains less tha® entries.E can join as no=N—g— (4)
a parent ofA. E has to join the group in whic! has

no parentsE has to obtain and update the replica-list of Now, the number of groups at levels R'. So, the average
other parents ofd. E then obtains the child-list from a number of peers in a group at leviglsaym;, is:
parent of A. A can have an empty parent-list during the ny

initialization phase of the system, or after a failure of all = pr

of its parents. IfA returns an empty parent-list, them - . R -
should look for other (up td3) peers, in the same group Combining (2), (3) and (5), and using= 7 we obtain:
as that ofA, with empty parent-list. If such peers exist N(a—1)
then E should make them its children. T Blah+ — 1)

« Construct parent-list To construct parent-list) has to - :
For efficient query routing we expect the number of peers

find a peer, sayf’, such thatl" is in level (I + 1) and in .
o 01 e i@ group at leveh to be f x log N, where0.5 < f < 2.
group (g x R), andT has an empty slot in its child-list. Replacingmy, — f x log N in (6) we obtain:

If such a peerT) exists thenE constructs its parent list
using?" and all the replicas of". Otherwise,E will start N(a—1)

®)

(6)

Ry b4l _ 1y

with an empty parent-list, and will wait for more peers B (a 1)= flogN (7)

to join at level (I + 1). . .

: (t+1) For practical values of andh we can approximatén/+1 —
|. Departure/Failure of Peers 1) with (6 x o*) for some constam. Replacing this value in
In DPMS, peer departure and failure are handled in the sarq% we can approximaté (for R # B and R > 1) as:

manner. The absence of an indexing peer, Bawill affect b~ 1 Nx(a—-1) 0 N g
the peers in its parent-list, child-list and replica-list. Parents “logR % TaflogN S log N (8)

and children ofE can still communicate through any of the Th laim that if build and maintai indexi
replicas of E. So query routing is not hampered until all of us we claim that It we can build and maintain an indexing

the replicas of a peer fail. hierarchy of heigh© (log %) then we will be able to solve

Failure or departure of a leaf peer has greater impact on 4@ ppm problem inO (10gN + ¢xlog 102[1\/) time. Here,

system. All the index information along the replication treeO log N) iis the cost of flooding one of thB" groups at level

rooted at the failed leaf peer, has to be updated. During thi N N . X
period (from the point of failure to the update of all indexing" andO(¢x log rogN). 'S th'e cogt of reachmg.the matg:vhmg
I@&‘f peers along the indexing hierarchy of heightog @).

peers in the replication tree) queries directed towards the fai for the | ) h
leaf peer will be evaluated as false matches. This will decregs@ccounts for the lossy aggregation scheme. For a system
without any aggregation.¢., information loss) the value df

search performance to some extent. k i
To efficiently deal with frequent join and leave of a leafhould equal one. Section IV-C presents an estimag of

peer, indexing peers should advertise their index information at

constant intervals. Any advertisement from a child peer shoul False Match Probability

be delayed until the end of the interval. The interval length can |, his section we establish the effectiveness of don't care

be used to tradeoff indgx update delay with network overhegdqq.q aggregation scheme over OR based aggredjaton
due to frequent advertisements. adopted in [11] and [13]. In don't care based aggregation
IV. ANALYSIS scheme, we consider an aggregate D to be a match for a
: .- uer if the set of 1-bits in Q is a subset of the 1-bits
A ngry RO[_Jtmg Efflcllency . . iqn D,yagsuming the don't care p%sitions in D to be 1s. This
In this section we will provide an analytical bound on theggmption leads to the possibility fsfise match where an
levels of indexing h|erar(_:hy that will allow query rout!ng iNaggregate can match a query, although none of the constituent
O(log N) hops, whereN is the total number of peers in thepaterns is a match for the query. For measuring the false match
system. For this analysis we will usé to denote branching ,papility we will assume that the pattern’s (advertised by
factor, R for replication facf[or, andy; as the number of PEErSihe |eaf peers) are Bloom-filters, with parametersn, andk
at level . Leaf peers reside at level 0 and the height (qQGee section I11-B). Assuming the hash functions are perfectly

maximum level) of the indexing hierarchy #s. ASSUmIng anqond, the probability that a specific bit is 1, after all of the
these definitions we can calculate the total number of peers atjements have been inserted into the filter is

level [ as: ; kn
n = ng kil = nga! 2) p=1- o) 9)
B m

and the total number of peers in the system as: o ] ) ]
3To form an aggregate, patterns are bit-wise ORed instead of introducing

h altl — 1 don't cares in bit-positions where they disagree.
N = an =ng——— 3) 4A hash function is perfectly random if the hashed value is uniformly
=0 a—1 distributed over the range, in this cage,m — 1}
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The probability of false match depends on the amount ¢fe, &) are advertised in a DHT-based system, then we can
aggregation, which in turn increases as we move up along timate the number of advertisement messagesmasr =
indexing hierarchy. We can estimate the probability) that Rlg N = PNa,;ﬁi—l{1 lg N. Hence, the ratio of message count
an aggregate D (at levé) is a false match for a query Q as:in these two systems is:

o = (1 _pTl)yl (10) MC — Cppums _ R(ah — 1)
Here,y; is the average number of patterns contained in D, Cpur Pla—-1)lgN
and; = |Q' A DX|. Hence,p™ is the probability that all ~Assuming W to be the width of a pattern, we can esti-

of the ; 1-bits of Q are present in a pattern contained in Dnate total advertisement volume for DHT-based systems as,
and ¢; stands for the probability that none of the constituetp gz = RW lg N. On the other hand, total advertisement

(13)

patterns in D, has all of the, 1-bits of Q. volume in DPMS is,Vppys = ;’:_01 PW(BA)'mR =
. m— h_ : H
We can estimatg; asy, = 47 andn asm = 7 (29) (). RWREA 1 Hence, the ratio of message volume in these

Here A and O are as defined in section lll-Dx = xpm IS two systems is:
the expected number of ones in Q, ands the percentage of

elements (e, n) from a pattern hashed into @22=2) (L) MV — YpPMs R((RA)" —1) (14)
is the proportion of don't care bits in an aggregate at level Vbour (RA-1)lgN
I, considering that the number of don't care bits increases|n Fig. 5(a) and Fig. 5(b) we produced plots & C and
linearly as we move up along the indexing hierarchy. MYV, respectively. For these plots we have uséd= 0.6,
For bitwise-OR based aggregation scheme, we can estimgte 5 p — 10 andR = 2, 3. These are the parameter settings
false match probability as, used in the experiments in section V as well. To count for
W= (1—p)¥ (11) the varying number of peers in the system we have vaHed

] ) from 4 to 9, which corresponds to a population ®f to 910
Comparing (10) and (11), we can infer that < v1 @ thoysand peers fak = 2 case and0 to 1, 061 thousand peers
< T. for R = 3 case. From Fig. 5 we can infer that advertisement
) message count in DPMS is much lower than that in DHT-
C. An Estimate of based systems. Advertisement message volume, on the other
Let v be the probability that a query will fail to match anyhand, in DMPS is comparable to that of DHT-based systems
aggregate at levdl, though it matched an aggregate at levebr R = 2 case, though it is about 4 times higher fBr= 3
(I+1). Then a query will fail to match an aggregate at levelase.
I with probability (1 — v)"~!v and in that caséh — ) hops
will be wasted. Hence the expected number of probes in a V. EXPERIMENTAL EVALUATION
complete descending phade=( from level h to level 0) is:

h—1

We have conducted experiments for two casegaajiom
bl case patterns are randomly generated bit strings, and b)
§h=h+ Z(h - DA —-v)"" v biased case patterns are Bloom-filters generated using 3-
1=0 grams from<song title, artist- tuples. These tuples are chosen
Applying equality > tat = x*(”JFl()lfﬁjz)l;Lnx"*? yields: randomly from a database of 46,500 real-world song infor-
’ mation extracted fronittp://www.leoslyrics.com/A query in
E=1+ L [1-v—(h+1)(1- )" (1 — ,,)h+2] random case is created by randomly takingf the 1-bits from
vh (12) @ randomly chosen advertised pattern. While in biased case,
An estimate ofv is, v = (1 — pm)y_ Here, At = 7,4, — aqQueryis created as a bloom-filter constructed fr%)mf the
advertised 3-grams from a randomly chosen advertisement.
We have evaluated routing performance and storage over-
g]ead for various parameter settings (section V-A), for different
network sizes (section V-B), and for varying levels of replica-
tion (with peer failure) (section V-C). We have calculated each

D. Advertisement Overhead ) : ) !
data point by averaging the statistical values obtained from

In this section we compare the advertisement overheggheondent simulation runs and 3000 queries per simulation

in DPMS against that in DHT-based systems. For DPM@,, Each simulation run corresponds to a randomly generated
number of advertisement messages in one refresh |nterva|n|§[‘,jmce of the system.

Cppys = 31—y Rni = RN%
Let R be the total number of advertised patterns in the .
system. In DPMS® can be computed a& — Pn, — /- Parameter Tuning
PN(yha*i_ll—l' Here, P is the average number of patterns ad- Table Il summaries the system parameters and their value(s).
vertised by a leaf pe€rNow if this same number of patternsEXperiments in this section are dedicated for analyzing the
impact of different system parameters on query routing per-
5_Un|ike DHT technigues, in DPMS a peer can transmit all Qf its indices ifprmance and storage overhead, and not on fault-tolerance
a single message to a parent. Hence, the number of advertisement messages . _
generated in DPMS does not depend on the number of pattern befigalacteristics of the system. Hence, we have chosen R=1.

advertised. The performance metrics analyzed in this section are:

T = M andy = L. y is the average number of
aggregates from levdlthat are fused to form an aggregate
at level (1 4+ 1).
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Fig. 5. Advertisement overhead
TABLE 1l

SYSTEM PARAMETERS AND THEIR VALUES USED FOR THE PARAMETER
TUNING EXPERIMENTS

Param. | Value(s) Description

B 4 Branching factor

R 1 Replication factor

H 4 Maximum level

N 4092 no. of peers in the system

P 10 number of patterns advertised by a leaf
peer.

A 0.6 target aggregation ratio

O 10, 20...60 Minimum number of non-X bits in an
aggregate

w 80, 100...200| Pattern or aggregate width, sameras
for Bloom-filter

« First-hit probesis the number of peers being probed
before the first match is found.

o
w

Branching factor, B

(b)

Not all bits of a pattern are required for query routing
with high accuracy. Query routing accuracy is almost the
same forO = 50 and O = W cases, whereas, indexing
overhead forO = 50 case is only65% of O = W case.
For O = 10 and O = 20 curves query routing accuracy
increases with increase . This is because we are
using both positional value and content of each bit while
matching a query to an aggregate. Whién increases,
number of possible positions of non-X bits increases,
which reduces the probability of false matches. Hence,
the decrease in the number of hops.

For a fixed value 0D, 10 decreases with increaselif.
Given two random patterns, the probability that they will
match on a given number of bits increases with This
results into higher probability of aggregation and lower
indexing overhead.

« Avg. probes/hiis the average number of probes required 1he observations presented for the random case (Fig. 6) are
for each hit. In the cases where multiple matches wefgually applicable for the biased case (Fig. 7). In addition, we

present, we traced up to 20 matches.
« Indexing overhead (IO)s an indicator for the extra

storage space requirement introduced by the indexing

hierarchy. 10 is measured as:

__no. of aggregates (at the indexing peers&S)

I
© no. of patterns (at the leaf peers)

« Effectiveness of aggregation (EApantifies the amount

can infer the following by comparing these graphs.
« Query routing performance is in general better for the

biased case. Specially f@» = 10 and O = 20 curves it
is about 3 times better, while EA is almost identical.

e IO and EA are better for the biased case as well. For

O < 40 curves, EA reaches its upper limi¢ for the
biased case (Fig. 6(d) and Fig. 7(d)). Which implies,
higher level of aggregation is possible by reducidg

of reduction in (index) storage requirement achieved with without sacrificing routing performance.

the aggregation mechanism, and is measured as: ) )
B. Scaling Behavior

In this section we analyze the scaling behavior of DPMS
with growth in network size. Based on the observations in
Analyzing the curves in Fig. 6, we can infer the followingSection V-A, we have chosei’ = 180 and O = 50 for the
experiments presented in this sectidhhas been varied from

« Query routing accuracy increases with increase itFig. . .
6(a) and 6(b)) but at the expense of increased Stora%%)und&ooo to 21,000 while keeping the number of peers

overhead (see Fig. 6(c) and 6(d)). Information conteréer:gggoc;g Ztlsg?vhf::ft;fggelj\?fw: Ln;VeeXISSegerfrihgn'g the
of the agg_regate_s_ increases with increaseOL_n hence B =4 and the value ofﬁ was ;set to5 to accommodate all
beFter routlng efficiency. On the qther hand., Increase fe peers in the indexing hierarchy, without violating the above
O implies less space for aggregation, and higher numbr%rentioned constraints

of aggregates in the system, hence increased storaan Fig. 8, thelst hit Probes (estimatedjurve is a plot of

overhead.
e« For O = W and O = 60|yy—gy cases no aggregationpmbes = flogg N + est * hest.
E;;l PA=1Bly,

takes place and = 1, which gives the upper bound . o
on routing performance and lower bound on storage VPPer limit for BA =1 — S==p—
overhead. leaf peer do not aggregate afti= 1)

no. of aggregates with aggregation 16

EFA=1- - .
no. of aggregates without aggregation

A(Ah—

=1- h(Afl)) (note:
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Fig. 10. Impact of replication on storage overhead
Fig. 8. Scaling behavior V1. CONCLUSION AND FUTURE WORKS

€ese has been derived from (12) using the parameter valu | this paper we have defined the Distributed Pattern
used in this experiment and putting= 0.33 . he; has been \jatching (DPM) problem and have presented a scalable
derived from (7) forkR = 1 as,hest = logp %Jr% . solution, DPMS, to this problem. DPMS supports flexible

It is evident from Fig. 8 that the routing efficiency a) doequeries involving partial and multiple keywords. Query routing
not decrease significantly with network growth, b) is mucefficiency of DPMS is comparable to that of the structured
better for biased case than that of the random case, and 2P systems. For moderately stable networks, DPMS provides
close enough to the estimated curve. guarantee on search completeness and on the discovery of rare

For this experiment none of the parameters affecting storagans. Peers in DPMS maintain constant number of links,
overhead where varied, hen£® and EA were constant/O in contrast toO(log N) links per peer required by most
and EA for random case were.04 and 0.24, respectively; DHT-based systems. DPMS can easily be tailored to achieve
and for biased case weBe07 and0.48, respectively. context-sensitiveg.g, network proximity, user interesitc )
query routing. Moreover, DPMS can exploit the heterogeneity
in peer capabilities, and does not place any hard restriction on
_ o _ the placement of documents or indices.

For the experiments in this section we have vae#om  tne main drawback of the proposed system is the storage
1 to 6 while keeping all other parameters at a constant valyge heaq introduced by hierarchical indexing and replication.
We have used! = 4, B =4, O =50 andW = 180. N gy nerimental results presented in this paper demonstrate the
was varied from about, 000 (R = 1) to 40,500 (R = 6). worst possible values for the storage overhead {or random

For each value ok we have deactivated.¢., removed) up to_case). For most applications, there exists some bias among

50% of the peers irb% step, and have executed 3000 QUeTI&Re advertised patterns, which can enable higher levels of

on the rest of the peers. The impact of bias among the patteég regation and hence lower levels of storage overhead, as

is orthogonal to fault-tolerance characteristics of the_ syste monstrated by the results for the biased case. Another prob-

hence we have presented only the random case in this section. . - L

. : ) . em in DPMS stems from leave/join of leaf peers. Leave/join
Failure of indexing peers may result into unreachable le

eers (from levelH). To measure the impact of this phel indexing peers has local effect only. But, leave/join of a
b - : P PNe1aat peer results into cascaded updates along its replication
nomena we have defineuit rate (Fig. 9(a)) as the average

; ee. This problem can be mitigated by using periodic and
percentage of matches that are discovered by a query. -gi erential updates of index information between adjacent

impact of replication on the overall storage overhead in tﬂwedexing peers. This latency in update will not hamper the
m is presen in Fig. 10. . .

system Is p ese ted 9 O. . ._.normal operation of the system other than degrading query

By analyzing the curves in Fig. 9 and Fig. 10 we can mferE)uting performance to some extent

the following: )

g Modification of data at leaf peerg.g, change in filename,
insertion of new data/file or deletion of existing data/file
q q I q f.I ti f data/fil deleti f existing data/fil
IC'et?](.:y ecr(fea_fe re;sUcahy 33 more an mo:;a Peters Vil invalidate the associated index information. This problem

nthis (;]as; allurfeo eac '3 ‘exing pee;rlesu S|tnr(])m? rsists in any structured or semi-structured system, though
unreachable leal peers and Increases faise match raley, o ofoct jg higher in a hierarchical indexing system like
‘ _The downS|de_ of replication is the ex_ponennal growt PMS. It is possible to reduce the effect of data dynamism
:Ecrle(;sgsseﬁRF(lgéelgi(a))io?b(;\),velllecgr?bgt;rr?gv?/isthgltt?husmg periodic index updates. Another possible measure is
value of EA tends to?.— Ah—i as R tends to infinit fo allow approximate matching in query pattern and indexed
Y- pattern/aggregate instead of strict subset matching.

This justifies the curve in Fig 10(b). W di hi h d h i
« For resilient query routing, replication is necessary. But e are extending this research to demonstrate the appli-

a small value ofR (e.g, 2 or 3) would suffice this need cability of DPMS in different application domains, includ-
for most systems aéshming up 0% failure rate. ing service discovery and P2P databases. We also intend to

investigate the self-tuning and self-optimization aspects of

7% of the elements present in a randomly selectesbng title,artist- tuple DPMS’_ as our fu_ture researc_h in this dll’_eCtlon. Other possible
was used for generating a query extensions to this research include, a) incorporating context-
sensitive routing in DPMS and measuring its effectiveness,

C. Fault-tolerance
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